BEIJING, Dec. 22, 2025 /PRNewswire/ — WiMi Hologram Cloud Inc. (NASDAQ: WiMi) (“WiMi” or the “Company”), a leading global Hologram Augmented Reality (“AR”) TechnologyBEIJING, Dec. 22, 2025 /PRNewswire/ — WiMi Hologram Cloud Inc. (NASDAQ: WiMi) (“WiMi” or the “Company”), a leading global Hologram Augmented Reality (“AR”) Technology

WiMi Releases Next-Generation Hybrid Quantum Neural Network Structure Technology, Breaking Through the Bottleneck of Image Multi-Classification

BEIJING, Dec. 22, 2025 /PRNewswire/ — WiMi Hologram Cloud Inc. (NASDAQ: WiMi) (“WiMi” or the “Company”), a leading global Hologram Augmented Reality (“AR”) Technology provider, launched a hybrid quantum neural network structure (H-QNN) for image multi-classification. This technology organically integrates the spatial feature extraction capabilities of classical convolutional neural networks (CNN) with the high-dimensional nonlinear mapping features of quantum neural networks (QNN), forming a new type of hybrid structure that possesses stronger generalization ability and computational efficiency in multi-class classification scenarios. This technology not only systematically optimizes the quantum-classical hybrid learning system in theory but also achieves classification accuracy and stability superior to similar algorithms in actual experiments, laying a solid technical foundation for quantum intelligent vision systems.

The design of this hybrid quantum neural network (H-QNN) follows the principle of classical responsible for abstraction and quantum responsible for discrimination. The overall system consists of three main modules: feature dimensionality reduction and encoding module, quantum state transformation module, and hybrid decision and transfer learning module.

First, the feature dimensionality reduction and encoding module is based on the classical convolutional neural network (CNN) structure, extracting low-dimensional feature representations of images through several convolutional layers and pooling layers. The feature vectors after PCA dimensionality reduction are standardized and then input into the quantum encoding circuit. At this stage, WiMi adopts an improved angle encoding method (Angle Embedding) to map real-valued features to quantum state amplitudes, and achieves efficient encoding through multi-layer quantum rotation gates (Ry, Rz), thereby reducing quantum gate depth and lowering encoding noise.

Next, the quantum state transformation module undertakes the core tasks of high-dimensional feature mapping and nonlinear discrimination. This module includes several layers of quantum circuits, with each layer composed of parameterized rotation gates and controlled entanglement gates (CNOT or CZ), forming nonlinear coupling and entanglement of quantum states. To alleviate gradient vanishing, WiMi adopts a reconfigurable parameter sharing strategy, allowing different quantum layers to share some trainable parameters, while introducing mixed state perturbations to maintain gradient balance during the training process. This structural design effectively avoids the barren plateau phenomenon, enabling the model to maintain stable convergence in multi-class tasks.

Finally, the hybrid decision and transfer learning module integrates the results of quantum computing with the classical decision layer. The measurement probability distribution output by the quantum circuit is converted into feature vectors and fused with the output of the classical fully connected layer. This fused vector is input into the Softmax layer for final classification judgment. To further enhance the generalization performance in multi-class tasks, WiMi introduces a transfer learning mechanism, migrating the parameters of quantum layers pre-trained in small-sample tasks to new tasks, thereby reducing the number of training epochs and enhancing model stability.

In actual implementation, this structure supports running on simulation environments and hardware quantum processing units (QPU). The simulation environment uses high-performance GPU clusters to complete training of classical modules, while quantum modules are executed in quantum simulators or FPGA-accelerated quantum kernel estimation environments, achieving heterogeneous collaboration of classical and quantum computing resources.

The core innovation points of this technology are mainly embodied in the following aspects.

First, at the architectural design level, it achieves deep integration of convolutional neural networks (CNN) and quantum neural networks (QNN). Traditional quantum hybrid models usually simply embed the quantum part as a classification head, whereas the H-QNN proposed in this research adopts a three-stage distributed structure of “convolutional feature extraction—quantum mapping—hybrid decision-making”, enabling the quantum part not only to undertake nonlinear discrimination but also to achieve information reconstruction at the feature space level.

Second, at the encoding strategy level, the joint dimensionality reduction scheme of angle encoding and principal component analysis (PCA) proposed by WiMi effectively solves the quantum encoding dimension limitation problem. By optimizing the cumulative variance contribution rate of PCA, it ensures that the mapping between input features and quantum state amplitudes maintains high information fidelity, thereby maximizing the utilization rate of quantum information.

Third, at the training strategy level, WiMi introduces a transfer learning mechanism and parameter sharing structure. Traditional quantum neural networks often face risks of gradient vanishing and overfitting in multi-class classification training, while parameter sharing can establish balanced gradient flow between different quantum layers, and the transfer learning mechanism enables the model to achieve rapid convergence on new tasks with fewer training epochs. In addition, WiMi designs an early stopping strategy based on the quantum Fidelity metric, which determines whether the training has reached the optimal point by monitoring the stability of quantum state evolution, thereby preventing overfitting.

Finally, at the system implementation level, it adopts a heterogeneous computing architecture, running the classical computing part on CPU/GPU platforms, while the quantum part is executed in quantum simulation modules implemented on FPGA. The FPGA module realizes reconfigurable execution logic for parameterized quantum circuits, capable of completing quantum state updates within nanosecond-level response times, thereby significantly improving the overall training speed of the system. This hybrid computing architecture demonstrates performance advantages far exceeding pure CPU or GPU simulations in experiments.

The proposal of WiMi’s hybrid quantum neural network structure marks a key step in quantum artificial intelligence research moving from theoretical exploration toward practical applications. It not only demonstrates the potential advantages of quantum computing in the field of machine learning but also provides an engineered compromise solution for the current performance bottlenecks of quantum hardware. By embedding trainable quantum layers into the foundation of classical neural networks, this technology achieves efficient utilization of quantum computing resources, enabling quantum advantages to be embodied in real visual tasks. In the future, quantum intelligence will no longer be merely a theoretical conception but will deeply integrate with fields such as deep learning, computer vision, and edge computing, becoming an important driving force for promoting the development of intelligent society. Let quantum intelligence move from the laboratory to the real world, and let quantum technology truly serve industrial upgrades and the expansion of human cognition.

About WiMi Hologram Cloud

WiMi Hologram Cloud Inc. (NASDAQ: WiMi) focuses on holographic cloud services, primarily concentrating on professional fields such as in-vehicle AR holographic HUD, 3D holographic pulse LiDAR, head-mounted light field holographic devices, holographic semiconductors, holographic cloud software, holographic car navigation, metaverse holographic AR/VR devices, and metaverse holographic cloud software. It covers multiple aspects of holographic AR technologies, including in-vehicle holographic AR technology, 3D holographic pulse LiDAR technology, holographic vision semiconductor technology, holographic software development, holographic AR virtual advertising technology, holographic AR virtual entertainment technology, holographic ARSDK payment, interactive holographic virtual communication, metaverse holographic AR technology, and metaverse virtual cloud services. WiMi is a comprehensive holographic cloud technology solution provider. For more information, please visit http://ir.wimiar.com.

Translation Disclaimer

The original version of this announcement is the officially authorized and only legally binding version. If there are any inconsistencies or differences in meaning between the Chinese translation and the original version, the original version shall prevail. WiMi Hologram Cloud Inc. and related institutions and individuals make no guarantees regarding the translated version and assume no responsibility for any direct or indirect losses caused by translation inaccuracies.

Investor Inquiries, please contact:

WIMI Hologram Cloud Inc.
Email: pr@wimiar.com

ICR, LLC
Robin Yang
Tel: +1 (646) 975-9495
Email: wimi@icrinc.com

Cision View original content:https://www.prnewswire.com/news-releases/wimi-releases-next-generation-hybrid-quantum-neural-network-structure-technology-breaking-through-the-bottleneck-of-image-multi-classification-302648081.html

SOURCE WiMi Hologram Cloud Inc.

Market Opportunity
QUANTUM Logo
QUANTUM Price(QUANTUM)
$0.003246
$0.003246$0.003246
+0.03%
USD
QUANTUM (QUANTUM) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

U.S. Coinbase Premium Turns Negative Amid Asian Buying Surge

U.S. Coinbase Premium Turns Negative Amid Asian Buying Surge

U.S. institutional demand falls as Asian markets buy Bitcoin dips, causing negative Coinbase premium.
Share
CoinLive2025/12/23 14:20
Crucial ETH Unstaking Period: Vitalik Buterin’s Unwavering Defense for Network Security

Crucial ETH Unstaking Period: Vitalik Buterin’s Unwavering Defense for Network Security

BitcoinWorld Crucial ETH Unstaking Period: Vitalik Buterin’s Unwavering Defense for Network Security Ever wondered why withdrawing your staked Ethereum (ETH) isn’t an instant process? It’s a question that often sparks debate within the crypto community. Ethereum founder Vitalik Buterin recently stepped forward to defend the network’s approximately 45-day ETH unstaking period, asserting its crucial role in safeguarding the network’s integrity. This lengthy waiting time, while sometimes seen as an inconvenience, is a deliberate design choice with profound implications for security. Why is the ETH Unstaking Period a Vital Security Measure? Vitalik Buterin’s defense comes amidst comparisons to other networks, like Solana, which boast significantly shorter unstaking times. He drew a compelling parallel to military operations, explaining that an army cannot function effectively if its soldiers can simply abandon their posts at a moment’s notice. Similarly, a blockchain network requires a stable and committed validator set to maintain its security. The current ETH unstaking period isn’t merely an arbitrary delay. It acts as a critical buffer, providing the network with sufficient time to detect and respond to potential malicious activities. If validators could instantly exit, it would open doors for sophisticated attacks, jeopardizing the entire system. Currently, Ethereum boasts over one million active validators, collectively staking approximately 35.6 million ETH, representing about 30% of the total supply. This massive commitment underpins the network’s robust security model, and the unstaking period helps preserve this stability. Network Security: Ethereum’s Paramount Concern A shorter ETH unstaking period might seem appealing for liquidity, but it introduces significant risks. Imagine a scenario where a large number of validators, potentially colluding, could quickly withdraw their stake after committing a malicious act. Without a substantial delay, the network would have limited time to penalize them or mitigate the damage. This “exit queue” mechanism is designed to prevent sudden validator exodus, which could lead to: Reduced decentralization: A rapid drop in active validators could concentrate power among fewer participants. Increased vulnerability to attacks: A smaller, less stable validator set is easier to compromise. Network instability: Frequent and unpredictable changes in validator numbers can lead to performance issues and consensus failures. Therefore, the extended period is not a bug; it’s a feature. It’s a calculated trade-off between immediate liquidity for stakers and the foundational security of the entire Ethereum ecosystem. Ethereum vs. Solana: Different Approaches to Unstaking When discussing the ETH unstaking period, many point to networks like Solana, which offers a much quicker two-day unstaking process. While this might seem like an advantage for stakers seeking rapid access to their funds, it reflects fundamental differences in network architecture and security philosophies. Solana’s design prioritizes speed and immediate liquidity, often relying on different consensus mechanisms and validator economics to manage security risks. Ethereum, on the other hand, with its proof-of-stake evolution from proof-of-work, has adopted a more cautious approach to ensure its transition and long-term stability are uncompromised. Each network makes design choices based on its unique goals and threat models. Ethereum’s substantial value and its role as a foundational layer for countless dApps necessitate an extremely robust security posture, making the current unstaking duration a deliberate and necessary component. What Does the ETH Unstaking Period Mean for Stakers? For individuals and institutions staking ETH, understanding the ETH unstaking period is crucial for managing expectations and investment strategies. It means that while staking offers attractive rewards, it also comes with a commitment to the network’s long-term health. Here are key considerations for stakers: Liquidity Planning: Stakers should view their staked ETH as a longer-term commitment, not immediately liquid capital. Risk Management: The delay inherently reduces the ability to react quickly to market volatility with staked assets. Network Contribution: By participating, stakers contribute directly to the security and decentralization of Ethereum, reinforcing its value proposition. While the current waiting period may not be “optimal” in every sense, as Buterin acknowledged, simply shortening it without addressing the underlying security implications would be a dangerous gamble for the network’s reliability. In conclusion, Vitalik Buterin’s defense of the lengthy ETH unstaking period underscores a fundamental principle: network security cannot be compromised for the sake of convenience. It is a vital mechanism that protects Ethereum’s integrity, ensuring its stability and trustworthiness as a leading blockchain platform. This deliberate design choice, while requiring patience from stakers, ultimately fortifies the entire ecosystem against potential threats, paving the way for a more secure and reliable decentralized future. Frequently Asked Questions (FAQs) Q1: What is the main reason for Ethereum’s long unstaking period? A1: The primary reason is network security. A lengthy ETH unstaking period prevents malicious actors from quickly withdrawing their stake after an attack, giving the network time to detect and penalize them, thus maintaining stability and integrity. Q2: How long is the current ETH unstaking period? A2: The current ETH unstaking period is approximately 45 days. This duration can fluctuate based on network conditions and the number of validators in the exit queue. Q3: How does Ethereum’s unstaking period compare to other blockchains? A3: Ethereum’s unstaking period is notably longer than some other networks, such as Solana, which has a two-day period. This difference reflects varying network architectures and security priorities. Q4: Does the unstaking period affect ETH stakers? A4: Yes, it means stakers need to plan their liquidity carefully, as their staked ETH is not immediately accessible. It encourages a longer-term commitment to the network, aligning staker interests with Ethereum’s stability. Q5: Could the ETH unstaking period be shortened in the future? A5: While Vitalik Buterin acknowledged the current period might not be “optimal,” any significant shortening would likely require extensive research and network upgrades to ensure security isn’t compromised. For now, the focus remains on maintaining robust network defenses. Found this article insightful? Share it with your friends and fellow crypto enthusiasts on social media to spread awareness about the critical role of the ETH unstaking period in Ethereum’s security! To learn more about the latest Ethereum trends, explore our article on key developments shaping Ethereum’s institutional adoption. This post Crucial ETH Unstaking Period: Vitalik Buterin’s Unwavering Defense for Network Security first appeared on BitcoinWorld.
Share
Coinstats2025/09/18 15:30
USD/JPY jumps to near 148.30 as Fed Powell’s caution on rate cuts boosts US Dollar

USD/JPY jumps to near 148.30 as Fed Powell’s caution on rate cuts boosts US Dollar

The post USD/JPY jumps to near 148.30 as Fed Powell’s caution on rate cuts boosts US Dollar appeared on BitcoinEthereumNews.com. USD/JPY climbs to near 148.30 as Fed’s Powell didn’t endorse aggressive dovish stance. Fed’s Powell warns of slowing job demand and upside inflation risks. Japan’s Jibun Bank Manufacturing PMI declines at a faster pace in September. The USD/JPY pair trades 0.45% higher to near 148.30 during the European trading session on Wednesday. The pair gains sharply as the US Dollar (USD) outperforms a majority of its peers, following comments from Federal Reserve (Fed) Chair Jerome Powell that the central bank needs to be cautious on further interest rate cuts. During the press time, the US Dollar Index (DXY), which tracks the Greenback’s value against six major currencies, rises almost 0.4% to near 97.60. The USD Index resumes its upside journey after a two-day corrective move. On Tuesday, Fed’s Powell stated at the Greater Providence Chamber of Commerce that the upside inflation risks and labor market concerns have posed a challenging situation for the central bank, which is prompting officials to exercise caution on further monetary policy easing. Powell also stated that the current interest rate range is “well positioned to respond to potential economic developments”. Fed Powell’s comments were similar to statements from Federal Open Market Committee (FOMC) members St. Louis Fed President Alberto Musalem, Atlanta Fed President Raphael Bostic, and Cleveland Fed President Beth Hammack who stated on Monday that the central bank needs to cautious over unwinding monetary policy restrictiveness further, citing persistent inflation risks. Going forward, investors will focus on the US Durable Goods Orders and Personal Consumption Expenditure Price Index (PCE) data for August, which will be released on Thursday and Friday, respectively. In Japan, the manufacturing business activity has declined again in September. Preliminary Jibun Bank Manufacturing PMI data came in lower at 48.4 against 49.7 in August. Economists had anticipated the Manufacturing PMI to…
Share
BitcoinEthereumNews2025/09/25 01:31