MaGGIe excels in hair rendering and instance separation on natural images, outperforming MGM and InstMatt in complex, multi-instance scenarios.MaGGIe excels in hair rendering and instance separation on natural images, outperforming MGM and InstMatt in complex, multi-instance scenarios.

Robust Mask-Guided Matting: Managing Noisy Inputs and Object Versatility

Abstract and 1. Introduction

  1. Related Works

  2. MaGGIe

    3.1. Efficient Masked Guided Instance Matting

    3.2. Feature-Matte Temporal Consistency

  3. Instance Matting Datasets

    4.1. Image Instance Matting and 4.2. Video Instance Matting

  4. Experiments

    5.1. Pre-training on image data

    5.2. Training on video data

  5. Discussion and References

\ Supplementary Material

  1. Architecture details

  2. Image matting

    8.1. Dataset generation and preparation

    8.2. Training details

    8.3. Quantitative details

    8.4. More qualitative results on natural images

  3. Video matting

    9.1. Dataset generation

    9.2. Training details

    9.3. Quantitative details

    9.4. More qualitative results

8.4. More qualitative results on natural images

Fig. 13 showcases our model’s performance in challenging scenarios, particularly in accurately rendering hair regions. Our framework consistently outperforms MGM⋆ in detail preservation, especially in complex instance interactions. In comparison with InstMatt, our model exhibits superior instance separation and detail accuracy in ambiguous regions.

\ Fig. 14 and Fig. 15 illustrate the performance of our model and previous works in extreme cases involving multiple instances. While MGM⋆ struggles with noise and accuracy in dense instance scenarios, our model maintains high precision. InstMatt, without additional training data, shows limitations in these complex settings.

\ The robustness of our mask-guided approach is further demonstrated in Fig. 16. Here, we highlight the challenges faced by MGM variants and SparseMat in predicting missing parts in mask inputs, which our model addresses. However, it is important to note that our model is not designed as a human instance segmentation network. As shown in Fig. 17, our framework adheres to the input guidance, ensuring precise alpha matte prediction even with multiple instances in the same mask.

\ Lastly, Fig. 12 and Fig. 11 emphasize our model’s generalization capabilities. The model accurately extracts both human subjects and other objects from backgrounds, showcasing its versatility across various scenarios and object types.

\ All examples are Internet images without ground-truth and the mask from r101fpn400e are used as the guidance.

\ Figure 13. Our model produces highly detailed alpha matte on natural images. Our results show that it is accurate and comparable with previous instance-agnostic and instance-awareness methods without expensive computational costs. Red squares zoom in the detail regions for each instance. (Best viewed in color and digital zoom).

\ Figure 14. Our frameworks precisely separate instances in an extreme case with many instances. While MGM often causes the overlapping between instances and MGM⋆ contains noises, ours produces on-par results with InstMatt trained on the external dataset. Red arrow indicates the errors. (Best viewed in color and digital zoom).

\ Figure 15. Our frameworks precisely separate instances in a single pass. The proposed solution shows comparable results with InstMatt and MGM without running the prediction/refinement five times. Red arrow indicates the errors. (Best viewed in color and digital zoom).

\ Figure 16. Unlike MGM and SparseMat, our model is robust to the input guidance mask. With the attention head, our model produces more stable results to mask inputs without complex refinement between instances like InstMatt. Red arrow indicates the errors. (Best viewed in color and digital zoom).

\ Figure 17. Our solution works correctly with multi-instance mask guidances. When multiple instances exist in one guidance mask, we still produce the correct union alpha matte for those instances. Red arrow indicates the errors or the zoom-in region in red box. (Best viewed in color and digital zoom).

\ Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without retraining.

\ Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without retraining. (Continued)

\ Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without retraining. (Continued)

\ Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without retraining. (Continued)

\ Table 13. The effectiveness of proposed temporal consistency modules on V-HIM60 (Extension of Table 6). The combination of bi-directional Conv-GRU and forward-backward fusion achieves the best overall performance on three test sets. Bold highlights the best for each level.

\

:::info Authors:

(1) Chuong Huynh, University of Maryland, College Park (chuonghm@cs.umd.edu);

(2) Seoung Wug Oh, Adobe Research (seoh,jolee@adobe.com);

(3) Abhinav Shrivastava, University of Maryland, College Park (abhinav@cs.umd.edu);

(4) Joon-Young Lee, Adobe Research (jolee@adobe.com).

:::


:::info This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.

:::

\

Market Opportunity
Mask Network Logo
Mask Network Price(MASK)
$0.5658
$0.5658$0.5658
-0.31%
USD
Mask Network (MASK) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Is Putnam Global Technology A (PGTAX) a strong mutual fund pick right now?

Is Putnam Global Technology A (PGTAX) a strong mutual fund pick right now?

The post Is Putnam Global Technology A (PGTAX) a strong mutual fund pick right now? appeared on BitcoinEthereumNews.com. On the lookout for a Sector – Tech fund? Starting with Putnam Global Technology A (PGTAX – Free Report) should not be a possibility at this time. PGTAX possesses a Zacks Mutual Fund Rank of 4 (Sell), which is based on various forecasting factors like size, cost, and past performance. Objective We note that PGTAX is a Sector – Tech option, and this area is loaded with many options. Found in a wide number of industries such as semiconductors, software, internet, and networking, tech companies are everywhere. Thus, Sector – Tech mutual funds that invest in technology let investors own a stake in a notoriously volatile sector, but with a much more diversified approach. History of fund/manager Putnam Funds is based in Canton, MA, and is the manager of PGTAX. The Putnam Global Technology A made its debut in January of 2009 and PGTAX has managed to accumulate roughly $650.01 million in assets, as of the most recently available information. The fund is currently managed by Di Yao who has been in charge of the fund since December of 2012. Performance Obviously, what investors are looking for in these funds is strong performance relative to their peers. PGTAX has a 5-year annualized total return of 14.46%, and is in the middle third among its category peers. But if you are looking for a shorter time frame, it is also worth looking at its 3-year annualized total return of 27.02%, which places it in the middle third during this time-frame. It is important to note that the product’s returns may not reflect all its expenses. Any fees not reflected would lower the returns. Total returns do not reflect the fund’s [%] sale charge. If sales charges were included, total returns would have been lower. When looking at a fund’s performance, it…
Share
BitcoinEthereumNews2025/09/18 04:05
MoneyGram launches stablecoin-powered app in Colombia

MoneyGram launches stablecoin-powered app in Colombia

The post MoneyGram launches stablecoin-powered app in Colombia appeared on BitcoinEthereumNews.com. MoneyGram has launched a new mobile application in Colombia that uses USD-pegged stablecoins to modernize cross-border remittances. According to an announcement on Wednesday, the app allows customers to receive money instantly into a US dollar balance backed by Circle’s USDC stablecoin, which can be stored, spent, or cashed out through MoneyGram’s global retail network. The rollout is designed to address the volatility of local currencies, particularly the Colombian peso. Built on the Stellar blockchain and supported by wallet infrastructure provider Crossmint, the app marks MoneyGram’s most significant move yet to integrate stablecoins into consumer-facing services. Colombia was selected as the first market due to its heavy reliance on inbound remittances—families in the country receive more than 22 times the amount they send abroad, according to Statista. The announcement said future expansions will target other remittance-heavy markets. MoneyGram, which has nearly 500,000 retail locations globally, has experimented with blockchain rails since partnering with the Stellar Development Foundation in 2021. It has since built cash on and off ramps for stablecoins, developed APIs for crypto integration, and incorporated stablecoins into its internal settlement processes. “This launch is the first step toward a world where every person, everywhere, has access to dollar stablecoins,” CEO Anthony Soohoo stated. The company emphasized compliance, citing decades of regulatory experience, though stablecoin oversight remains fluid. The US Congress passed the GENIUS Act earlier this year, establishing a framework for stablecoin regulation, which MoneyGram has pointed to as providing clearer guardrails. This is a developing story. This article was generated with the assistance of AI and reviewed by editor Jeffrey Albus before publication. Get the news in your inbox. Explore Blockworks newsletters: Source: https://blockworks.co/news/moneygram-stablecoin-app-colombia
Share
BitcoinEthereumNews2025/09/18 07:04
As XRP and ETH soar, investors are turning to MSP Miner for $9,250 in daily gains.

As XRP and ETH soar, investors are turning to MSP Miner for $9,250 in daily gains.

MSP Miner lets investors earn up to $9,250 daily from BTC, ETH, DOGE, and more with fully managed, green-energy-powered mining contracts and daily payouts.
Share
Blockchainreporter2025/09/18 06:30