The accelerating progress of quantum computing is pushing the cryptocurrency industry to confront risks that were once considered distant. Modern blockchains secureThe accelerating progress of quantum computing is pushing the cryptocurrency industry to confront risks that were once considered distant. Modern blockchains secure

qLABS Advances Post-Quantum Security With qONE and Quantum-Sig

The accelerating progress of quantum computing is pushing the cryptocurrency industry to confront risks that were once considered distant. Modern blockchains secure trillions of dollars using cryptographic systems such as elliptic curve signatures. While these methods remain reliable today, experts broadly expect them to become vulnerable once sufficiently powerful quantum computers are operational. Although the exact timeline remains uncertain, the direction of technological progress is clear, prompting a shift from theoretical discussion to early-stage implementation of quantum-resistant solutions.

Within this environment, qLABS, a crypto-focused foundation, has emerged with a strategy centered on post-quantum cryptography. The organization is preparing to introduce its first quantum-resistant token, known as qONE, supported by its Quantum-Sig wallet infrastructure. A limited presale for the token has been scheduled for early February, marking one of the more concrete attempts to deploy quantum-ready tools rather than simply researching them.

A Quantum-Native Design Philosophy

qLABS characterizes its approach as quantum-native, meaning its systems are designed from the outset to resist future quantum attacks instead of being retrofitted later. According to the foundation’s leadership, waiting for slow, protocol-level upgrades across major blockchains could leave assets exposed for years. They have indicated that many existing initiatives remain fragmented, focusing on research, partial protocol updates, or wallet improvements, while failing to offer immediate protection for assets already held on public networks.

The foundation’s primary concern centers on the harvest now, decrypt later threat. In this scenario, attackers collect encrypted data or public keys today with the expectation that quantum computers will eventually be able to break them. In blockchain environments, this risk is amplified because digital signatures are fundamental to wallet security and proof of ownership.

Layering Security Onto Existing Blockchains

Rather than launching an entirely new blockchain, qLABS has chosen to focus on adding a quantum-resistant layer to established networks such as Ethereum, Solana, and Hyperliquid. The initial emphasis is on protecting assets at the wallet and transaction layer. This design allows users to opt into quantum protection without needing to migrate funds to a new chain or ecosystem.

The technical foundation of this approach combines post-quantum cryptography with zero-knowledge proofs. The system is built on IronCAP, a code-based cryptographic framework aligned with standards published by the US National Institute of Standards and Technology. One of the more distinctive elements is a dual-signature transaction model. Under this structure, transactions require the conventional signature recognized by the underlying blockchain as well as a second, quantum-resistant signature, adding an extra layer of defense without breaking compatibility.

Industry-Wide Momentum Builds

The efforts by qLABS reflect a broader shift across the blockchain sector toward preparing for quantum-era risks. Major industry players have begun to acknowledge the issue more openly. Several years ago, Coinbase established an independent advisory board focused on quantum computing and blockchain security, bringing together researchers, academics, and protocol developers. The group was tasked with producing assessments and guidance to help institutions plan for long-term quantum threats. Coinbase Ventures has also backed initiatives developing staged approaches to post-quantum security.

Other blockchain ecosystems are moving in similar directions. The Ethereum Foundation has elevated post-quantum security to a strategic priority, allocating funding for research and incentive programs focused on alternative cryptographic methods. Aptos has also discussed adopting a post-quantum signature scheme aligned with NIST standards, favoring early and conservative implementation even at the cost of efficiency.

Shrinking Timelines and Early Infrastructure

Recent research suggests that the number of qubits required to compromise widely used elliptic curve signatures has declined faster than previously expected. Some projections now point to the early or mid-2030s as a plausible window for cryptographically relevant quantum machines. Even conservative forecasts acknowledge that migration planning must begin well before such systems arrive.

Against this backdrop, qLABS is positioning qONE and the Quantum-Sig wallet as early infrastructure rather than experimental technology. The qONE token is designed to function as an access mechanism for quantum-secure transaction services, with usage-based fees instead of subscription models. Through this approach, qLABS aims to provide practical, deployable protection at a time when the industry is increasingly accepting that quantum readiness is no longer optional but inevitable.

The post qLABS Advances Post-Quantum Security With qONE and Quantum-Sig appeared first on CoinTrust.

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

VFX Token vs Chainlink: When Real Trading Data Beats Oracle Promises

VFX Token vs Chainlink: When Real Trading Data Beats Oracle Promises

While Chainlink trades at $24 with a $15 billion market cap based on oracle promises, VFX Token at $0.06 generates […] The post VFX Token vs Chainlink: When Real Trading Data Beats Oracle Promises appeared first on Coindoo.
Share
Coindoo2025/09/19 00:00
The Role of Blockchain in Building Safer Web3 Gaming Ecosystems

The Role of Blockchain in Building Safer Web3 Gaming Ecosystems

The gaming industry is in the midst of a historic shift, driven by the rise of Web3. Unlike traditional games, where developers and publishers control assets and dictate in-game economies, Web3 gaming empowers players with ownership and influence. Built on blockchain technology, these ecosystems are decentralized by design, enabling true digital asset ownership, transparent economies, and a future where players help shape the games they play. However, as Web3 gaming grows, security becomes a focal point. The range of security concerns, from hacking to asset theft to vulnerabilities in smart contracts, is a significant issue that will undermine or erode trust in this ecosystem, limiting or stopping adoption. Blockchain technology could be used to create security processes around secure, transparent, and fair Web3 gaming ecosystems. We will explore how security is increasing within gaming ecosystems, which challenges are being overcome, and what the future of security looks like. Why is Security Important in Web3 Gaming? Web3 gaming differs from traditional gaming in that players engage with both the game and assets with real value attached. Players own in-game assets that exist as tokens or NFTs (Non-Fungible Tokens), and can trade and sell them. These game assets usually represent significant financial value, meaning security failure could represent real monetary loss. In essence, without security, the promises of owning “something” in Web3, decentralized economies within games, and all that comes with the term “fair” gameplay can easily be eroded by fraud, hacking, and exploitation. This is precisely why the uniqueness of blockchain should be emphasized in securing Web3 gaming. How Blockchain Ensures Security in Web3 Gaming?
  1. Immutable Ownership of Assets Blockchain records can be manipulated by anyone. If a player owns a sword, skin, or plot of land as an NFT, it is verifiably in their ownership, and it cannot be altered or deleted by the developer or even hacked. This has created a proven track record of ownership, providing control back to the players, unlike any centralised gaming platform where assets can be revoked.
  2. Decentralized Infrastructure Blockchain networks also have a distributed architecture where game data is stored in a worldwide network of nodes, making them much less susceptible to centralised points of failure and attacks. This decentralised approach makes it exponentially more difficult to hijack systems or even shut off the game’s economy.
  3. Secure Transactions with Cryptography Whether a player buys an NFT or trades their in-game tokens for other items or tokens, the transactions are enforced by cryptographic algorithms, ensuring secure, verifiable, and irreversible transactions and eliminating the risks of double-spending or fraudulent trades.
  4. Smart Contract Automation Smart contracts automate the enforcement of game rules and players’ economic exchanges for the developer, eliminating the need for intermediaries or middlemen, and trust for the developer. For example, if a player completes a quest that promises a reward, the smart contract will execute and distribute what was promised.
  5. Anti-Cheating and Fair Gameplay The naturally transparent nature of blockchain makes it extremely simple for anyone to examine a specific instance of gameplay and verify the economic outcomes from that play. Furthermore, multi-player games that enforce smart contracts on things like loot sharing or win sharing can automate and measure trustlessness and avoid cheating, manipulations, and fraud by developers.
  6. Cross-Platform Security Many Web3 games feature asset interoperability across platforms. This interoperability is made viable by blockchain, which guarantees ownership is maintained whenever assets transition from one game or marketplace to another, thereby offering protection to players who rely on transfers for security against fraud. Key Security Dangers in Web3 Gaming Although blockchain provides sound first principles of security, the Web3 gaming ecosystem is susceptible to threats. Some of the most serious threats include:
Smart Contract Vulnerabilities: Smart contracts that are poorly written or lack auditing will leave openings for exploitation and thereby result in asset loss. Phishing Attacks: Unintentionally exposing or revealing private keys or signing transactions that are not possible to reverse, under the assumption they were genuine transaction requests. Bridge Hacks: Cross-chain bridges, which allow players to move their assets between their respective blockchains, continually face hacks, requiring vigilance from players and developers. Scams and Rug Pulls: Rug pulls occur when a game project raises money and leaves, leaving player assets worthless. Regulatory Ambiguity: Global regulations remain unclear; risks exist for players and developers alike. While blockchain alone won’t resolve every issue, it remediates the responsibility of the first principles, more so when joined by processes such as auditing, education, and the right governance, which can improve their contribution to the security landscapes in game ecosystems. Real Life Examples of Blockchain Security in Web3 Gaming Axie Infinity (Ronin Hack): The Axie Infinity game and several projects suffered one of the biggest hacks thus far on its Ronin bridge; however, it demonstrated the effectiveness of multi-sig security and the effective utilization of decentralization. The industry benefited through learning and reflection, thus, as projects have implemented changes to reduce the risks of future hacks or misappropriation. Immutable X: This Ethereum scaling solution aims to ensure secure NFT transactions for gaming, allowing players to trade an asset without the burden of exorbitant fees and fears of being a victim of fraud. Enjin: Enjin is providing a trusted infrastructure for Web3 games, offering secure NFT creation and transfer while reiterating that ownership and an asset securely belong to the player. These examples indubitably illustrate that despite challenges to overcome, blockchain remains the foundational layer on which to build more secure Web3 gaming environments. Benefits of Blockchain Security for Players and Developers For Players: Confidence in true ownership of assets Transparency in in-game economies Protection against nefarious trades/scams For Developers: More trust between players and the platform Less reliance on centralized infrastructure Ability to attract wealth and players based on provable fairness By incorporating blockchain security within the mechanics of game design, developers can create and enforce resilient ecosystems where players feel reassured in investing time, money, and ownership within virtual worlds. The Future of Secure Web3 Gaming Ecosystems As the wisdom of blockchain technology and industry knowledge improves, the future for secure Web3 gaming looks bright. New growing trends include: Zero-Knowledge Proofs (ZKPs): A new wave of protocols that enable private transactions and secure smart contracts while managing user privacy with an element of transparency. Decentralized Identity Solutions (DID): Helping players control their identities and decrease account theft risks. AI-Enhanced Security: Identifying irregularities in user interactions by sampling pattern anomalies to avert hacks and fraud by time-stamping critical events. Interoperable Security Standards: Allowing secured and seamless asset transfers across blockchains and games. With these innovations, blockchain will not only secure gaming assets but also enhance the overall trust and longevity of Web3 gaming ecosystems. Conclusion Blockchain is more than a buzzword in Web3; it is the only way to host security, fairness, and transparency. With blockchain, players confirm immutable ownership of digital assets, there is a decentralized infrastructure, and finally, it supports smart contracts to automate code that protects players and developers from the challenges of digital economies. The threats, vulnerabilities, and scams that come from smart contracts still persist, but the industry is maturing with better security practices, cross-chain solutions, and increased formal cryptographic tools. In the coming years, blockchain will remain the base to digital economies and drive Web3 gaming environments that allow players to safely own, trade, and enjoy their digital experiences free from fraud and exploitation. While blockchain and gaming alone entertain, we will usher in an era of secure digital worlds where trust complements innovation. The Role of Blockchain in Building Safer Web3 Gaming Ecosystems was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story
Share
Medium2025/09/18 14:40
Justin Sun Bitcoin Move: Strategic $100M Treasury Acquisition Signals Major Confidence

Justin Sun Bitcoin Move: Strategic $100M Treasury Acquisition Signals Major Confidence

BitcoinWorld Justin Sun Bitcoin Move: Strategic $100M Treasury Acquisition Signals Major Confidence In a significant move for cryptocurrency markets, Tron founder
Share
bitcoinworld2026/02/02 19:10