I spent a few weeks building a Neuro-Symbolic Manufacturing Engine. I proved that AI can design drones that obey physics. I also proved that asking AI to pivot that code to robotics is a one-way ticket to a circular drain.I spent a few weeks building a Neuro-Symbolic Manufacturing Engine. I proved that AI can design drones that obey physics. I also proved that asking AI to pivot that code to robotics is a one-way ticket to a circular drain.

Why Gemini 3.0 is a Great Builder But Still Needs a Human in the Loop

I spent a few weeks building a Neuro-Symbolic Manufacturing Engine. I proved that AI can design drones that obey physics. I also proved that asking AI to pivot that code to robotics is a one-way ticket to a circular drain.

\ Over the last few weeks, I have been documenting my journey building OpenForge, an AI system capable of translating vague user intent into flight-proven hardware.

\ The goal was to test the reasoning capabilities of Google’s Gemini 3.0. I wanted to answer a specific question: Can an LLM move beyond writing Python scripts and actually engineer physical systems where tolerance, voltage, and compatibility matter?

\ The answer, it turns out, is a complicated "Yes, but…"

\ I am wrapping up this project today. Here is the post-mortem on what worked, what failed, and the critical difference between Generating code and Refactoring systems.

The Win: Drone_4 Works

First, the good news. The drone_4 branch of the repository is a success.

\ If you clone the repo and ask for a "Long Range Cinema Drone," the system works from seed to simulation.

  1. It understands intent: It knows that "Cinema" means smooth flight and "Long Range" means GPS and Crossfire protocols.
  2. It obeys physics: The Compatibility Engine successfully rejects motor/battery combinations that would overheat or explode.
  3. It simulates reality: The USD files generated for NVIDIA Isaac Sim actually fly.

\ I will admit, I had to be pragmatic. In make_fleet.py, I "cheated" a little bit. I relied less on the LLM to dynamically invent the fleet logic and more on hard-coded Python orchestration. I had to remind myself that this was a test of Gemini 3.0’s reasoning, not a contest to see if I could avoid writing a single line of code.

\ As a proof of concept for Neuro-Symbolic AI—where the LLM handles the creative translation, and Python handles the laws of physics—OpenForge is a win.

The Failure: The Quadruped Pivot

The second half of the challenge was to take this working engine and pivot it. I wanted to turn the Drone Designer into a Robot Dog Designer (the Ranch Dog).

\ I fed Gemini 3.0 the entire codebase (88k tokens) and asked it to refactor. It confidently spit out new physics, new sourcing agents, and new kinematics solvers.

\ I am officially shelving the Quadruped branch.

\ It has become obvious that the way I started this pivot led me down a circular drain rabbit hole of troubleshooting. I found myself in a loop where fixing a torque calculation would break the inventory sourcing, and fixing the sourcing would break the simulation.

\ The Quad branch is effectively dead. If I want to build the Ranch Dog, I have to step back and build it from scratch, using the Drone engine merely as a reference model, not a base to overwrite.

The Lesson: The Flattening Effect

Why did the Drone engine succeed while the Quadruped refactor failed?

\ It comes down to a specific behavior I’ve observed in Gemini 3.0 (and other high-context models).

\ When you build from the ground up, you and the AI build the architecture step-by-step. You lay the foundation, then the framing, then the roof.

\ However, when you ask an LLM to pivot an existing application, it does not see the history of the code. It doesn't see the battle scars.

\

  • The original Drone code was broken into distinct, linear steps.
  • There were specific error-handling gates and wait states derived from previous failures.

\ Gemini 3.0, in an attempt to be efficient, flattened the architecture. It lumped distinct logical steps into singular, monolithic processes. On the surface, the code looked cleaner and more Pythonic. But in reality, it had removed the structural load-bearing walls that kept the application stable.

\ It glossed over the nuance. It assumed the code was a style guide, not a structural necessity.

The Paradox of Capability: Gemini 2.5 vs. 3.0

This project highlighted a counterintuitive reality: Gemini 2.5 was safer because the code it confidently spit out was truncated pseudo-code.

\ In previous versions, the outputs were structured to show you how you might go about building. You would then have to build a plan to build the guts inside the program. Sometimes, it could write the entire file. Sometimes, you had to go function by function.

\

  • Gemini 2.5 forced me to be the Architect. I had to go program-by-program, mapping out exactly what I wanted. I had to hold the AI's hand.
  • Gemini 3.0 has the speed and reasoning to do it all at once. It creates a believable illusion of a One-Shot Pivot.

\ Gemini 3.0 creates code that looks workable immediately but is structurally rotten inside. It skips the scaffolding phase.

Final Verdict

If you are looking to build a Generative Manufacturing Engine, or any complex system with LLMs, here are my final takeaways from the OpenForge experiment:

  1. Greenfield is Easy, Brownfield is Hard: LLMs excel at building from scratch. They are terrible at renovating complex, existing architectures without massive human hand-holding.
  2. Don't Refactor with Prompts: If you want to change the purpose of an app, don't ask the AI to rewrite this for X. Instead, map out the logic flow of the old app, and ask the AI to build a new app using that logic map.
  3. Architecture is Still King: You cannot view a codebase as a fluid document that can be morphed by an LLM. You must respect the scaffolding.

\ OpenForge proved that we can bridge the gap between vague user intent and physical engineering. We just can't take the human out of the architecture chair just yet.

\ That said, Gemini 3.0 is a massive leap from 2.5. Part of what I am exploring here is how to get the best out of a brand-new tool.

\

Market Opportunity
WHY Logo
WHY Price(WHY)
$0.00000001619
$0.00000001619$0.00000001619
0.00%
USD
WHY (WHY) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Why 100 Percent Test Coverage is Not Possible — Lessons from Testing Banking and Healthcare Systems

Why 100 Percent Test Coverage is Not Possible — Lessons from Testing Banking and Healthcare Systems

Quality is not about testing everything; quality is about testing what is most important.
Share
Hackernoon2025/12/26 16:05
US eyes crypto mining at disputed nuclear plant in Russia-Ukraine conflict: report

US eyes crypto mining at disputed nuclear plant in Russia-Ukraine conflict: report

The plant is located in Ukraine and has been under Russian control since 2022, with its future management a key issue in peace talks.
Share
Coinstats2025/12/26 18:58
Google's AP2 protocol has been released. Does encrypted AI still have a chance?

Google's AP2 protocol has been released. Does encrypted AI still have a chance?

Following the MCP and A2A protocols, the AI Agent market has seen another blockbuster arrival: the Agent Payments Protocol (AP2), developed by Google. This will clearly further enhance AI Agents' autonomous multi-tasking capabilities, but the unfortunate reality is that it has little to do with web3AI. Let's take a closer look: What problem does AP2 solve? Simply put, the MCP protocol is like a universal hook, enabling AI agents to connect to various external tools and data sources; A2A is a team collaboration communication protocol that allows multiple AI agents to cooperate with each other to complete complex tasks; AP2 completes the last piece of the puzzle - payment capability. In other words, MCP opens up connectivity, A2A promotes collaboration efficiency, and AP2 achieves value exchange. The arrival of AP2 truly injects "soul" into the autonomous collaboration and task execution of Multi-Agents. Imagine AI Agents connecting Qunar, Meituan, and Didi to complete the booking of flights, hotels, and car rentals, but then getting stuck at the point of "self-payment." What's the point of all that multitasking? So, remember this: AP2 is an extension of MCP+A2A, solving the last mile problem of AI Agent automated execution. What are the technical highlights of AP2? The core innovation of AP2 is the Mandates mechanism, which is divided into real-time authorization mode and delegated authorization mode. Real-time authorization is easy to understand. The AI Agent finds the product and shows it to you. The operation can only be performed after the user signs. Delegated authorization requires the user to set rules in advance, such as only buying the iPhone 17 when the price drops to 5,000. The AI Agent monitors the trigger conditions and executes automatically. The implementation logic is cryptographically signed using Verifiable Credentials (VCs). Users can set complex commission conditions, including price ranges, time limits, and payment method priorities, forming a tamper-proof digital contract. Once signed, the AI Agent executes according to the conditions, with VCs ensuring auditability and security at every step. Of particular note is the "A2A x402" extension, a technical component developed by Google specifically for crypto payments, developed in collaboration with Coinbase and the Ethereum Foundation. This extension enables AI Agents to seamlessly process stablecoins, ETH, and other blockchain assets, supporting native payment scenarios within the Web3 ecosystem. What kind of imagination space can AP2 bring? After analyzing the technical principles, do you think that's it? Yes, in fact, the AP2 is boring when it is disassembled alone. Its real charm lies in connecting and opening up the "MCP+A2A+AP2" technology stack, completely opening up the complete link of AI Agent's autonomous analysis+execution+payment. From now on, AI Agents can open up many application scenarios. For example, AI Agents for stock investment and financial management can help us monitor the market 24/7 and conduct independent transactions. Enterprise procurement AI Agents can automatically replenish and renew without human intervention. AP2's complementary payment capabilities will further expand the penetration of the Agent-to-Agent economy into more scenarios. Google obviously understands that after the technical framework is established, the ecological implementation must be relied upon, so it has brought in more than 60 partners to develop it, almost covering the entire payment and business ecosystem. Interestingly, it also involves major Crypto players such as Ethereum, Coinbase, MetaMask, and Sui. Combined with the current trend of currency and stock integration, the imagination space has been doubled. Is web3 AI really dead? Not entirely. Google's AP2 looks complete, but it only achieves technical compatibility with Crypto payments. It can only be regarded as an extension of the traditional authorization framework and belongs to the category of automated execution. There is a "paradigm" difference between it and the autonomous asset management pursued by pure Crypto native solutions. The Crypto-native solutions under exploration are taking the "decentralized custody + on-chain verification" route, including AI Agent autonomous asset management, AI Agent autonomous transactions (DeFAI), AI Agent digital identity and on-chain reputation system (ERC-8004...), AI Agent on-chain governance DAO framework, AI Agent NPC and digital avatars, and many other interesting and fun directions. Ultimately, once users get used to AI Agent payments in traditional fields, their acceptance of AI Agents autonomously owning digital assets will also increase. And for those scenarios that AP2 cannot reach, such as anonymous transactions, censorship-resistant payments, and decentralized asset management, there will always be a time for crypto-native solutions to show their strength? The two are more likely to be complementary rather than competitive, but to be honest, the key technological advancements behind AI Agents currently all come from web2AI, and web3AI still needs to keep up the good work!
Share
PANews2025/09/18 07:00