SDD (Spec-Driven Development) is being positioned as the "right way" to build with AI. For certain problems such as API integrations with strict contracts, regulated industries with compliance requirements, this works well. But for exploratory development like most of the cases? SDD breaks down fast. Stop chasing perfect upfront specifications. The future isn't about better specs, it's about better context.SDD (Spec-Driven Development) is being positioned as the "right way" to build with AI. For certain problems such as API integrations with strict contracts, regulated industries with compliance requirements, this works well. But for exploratory development like most of the cases? SDD breaks down fast. Stop chasing perfect upfront specifications. The future isn't about better specs, it's about better context.

The Limits of Spec-Driven Development

2025/12/02 18:12

In the 1990s, developers wrote long functional specifications before coding. By 2010, agile replaced the idea that you should define everything up front. Today, as AI coding struggles with quality, the old playbook is returning: writing detailed specs in hopes of getting reliable outcomes.

On paper, spec-driven development (SDD) feels like the perfect solution: write a detailed spec first, then let the model generate “correct” code from it.

But reality hits hard.

Just like the pattern we have seen before: when we try to “solve unpredictability” by writing more things down upfront, the development fails, and always for the same reason — Reality changes faster than specs do.

\

What Is Spec-Driven Development?

Spec-driven development (SDD) is the practice of writing detailed upfront specifications first, and then using AI to generate code from them. These specs aim to define a system’s behavior, requirements, constraints, and interfaces precisely enough for an AI model to produce code reliably.

But it overlooks the fact that static artifacts can't contain all the context, regardless of how precise your specs are.

Let’s break this down.

\

Where Spec-Driven Development Fails

SDD are failing for four reasons that no amount of prompting or AI models have fixed yet:

1. Specs Are Expensive to Maintain

Writing comprehensive specs takes a significant amount of time. In addition, software development is an interactive process. With so many variables in play (requirements changing, constraints shifting, and new insights emerging during implementation), keeping specs in sync with the code creates a maintenance tax that grows with system complexity. Instead of reducing overhead, SDD often doubles it.

Suppose you’re building a subscription invoices system. You write a spec describing billing cycles, proration rules, tax conditions, and grace periods. But a week later, finance says, “We need European VAT handling”.

Updating the code is much easier than updating the spec first. But this leads to a situation where the code, the spec, and the team’s mental model no longer match.

As a result, every update becomes documentation debt disguised as engineering discipline.

2. Specs Don't Reflect All Context

Specs are used to describe what a system should do, but they can't explain why it works that way. And the “why” carries the real context:

  • Why certain assumptions were made
  • Why specific tradeoffs were chosen
  • What the team learned while iterating

What real-world constraints shaped the solution. But these things never make it into the spec. And the missing context is where the real problems show up:

  • Edge cases only appear when the system is used.
  • Performance issues only appear under load.
  • User behavior only appears after launch.

So LLMs don’t struggle because the spec is “wrong.” They struggle because the spec can never capture all the context they need.

3. Over-specification creates the illusion of completeness

A detailed spec feels like control. It gives teams a sense that all cases are covered. But this confidence is often false.

Software development is exploratory. The most important insights come after you begin building. Being too fixed to a static spec leads to less iteration, creativity, and emergent solutions. It makes development into a brittle, waterfall-like process, just with AI in the loop.

4. The wrong level of abstraction

SDD tools today are optimized for parsing specs, not interpreting intent.

Most SDD approaches focus on implementation detail - The hows:

  • Field definitions
  • Enums
  • Request/response schemas
  • Function signatures

But what matters more is the whys behind:

  • Intent
  • Constraints
  • Context

Most current SDD tools (including systems like Kiro) generate code directly from these low-level specs. They can produce accurate scaffolding, but are missing context for resilient behavior. The result is code that is structurally correct but misaligned with the actual intent of the system.

\

What Actually Matters — Context Engineering

The missing piece in AI coding isn't more detailed specs, but better preserved context. This means AI-native development should:

1. Start with intent

Instead of jumping into writing specs, the workflow should begin by defining the core context. For instance, the problem you’re solving and why, the non-negotiable constraints, and the assumptions you have in the context.

2. Keep context up to date

AI-led development should be just as iterative as traditional software development. When requirements change or new insights come up, the context the model uses needs to be refreshed so the team and the AI stay aligned.

3. Specs should follow the codebase

Specs should be living artifacts and aligned with the actual implementation.

4. Preserve the whys, and not just requirements

Code shouldn’t just be about what it does, but also explain why it was built that way.

\

The Path Forward

For stable contracts and well-understood domains, spec-driven approaches can work great. But for exploratory development that comes with evolving requirements, context-driven approaches adapt better.

Most real-world projects have both stable contracts at system boundaries, adaptive iteration within them. This is the principle that shaped Yansu, our AI-led coding platform originally built for internal use to serve PE firms and mid-market engineering teams. The philosophy translated as a dynamic software development lifecycle (SDLC) in Yansu that:

  • Captures intent and constraints from discussions, examples, and tribal knowledge
  • Updates context and specs as understanding evolves
  • Simulates scenarios that reflect real system behavior before writing any code
  • Embeds explicitly the "whys" in the code, so the team can trace back to the reason behind each line

\

Market Opportunity
Spectral Logo
Spectral Price(SPEC)
$0.1251
$0.1251$0.1251
-9.54%
USD
Spectral (SPEC) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

The Channel Factories We’ve Been Waiting For

The Channel Factories We’ve Been Waiting For

The post The Channel Factories We’ve Been Waiting For appeared on BitcoinEthereumNews.com. Visions of future technology are often prescient about the broad strokes while flubbing the details. The tablets in “2001: A Space Odyssey” do indeed look like iPads, but you never see the astronauts paying for subscriptions or wasting hours on Candy Crush.  Channel factories are one vision that arose early in the history of the Lightning Network to address some challenges that Lightning has faced from the beginning. Despite having grown to become Bitcoin’s most successful layer-2 scaling solution, with instant and low-fee payments, Lightning’s scale is limited by its reliance on payment channels. Although Lightning shifts most transactions off-chain, each payment channel still requires an on-chain transaction to open and (usually) another to close. As adoption grows, pressure on the blockchain grows with it. The need for a more scalable approach to managing channels is clear. Channel factories were supposed to meet this need, but where are they? In 2025, subnetworks are emerging that revive the impetus of channel factories with some new details that vastly increase their potential. They are natively interoperable with Lightning and achieve greater scale by allowing a group of participants to open a shared multisig UTXO and create multiple bilateral channels, which reduces the number of on-chain transactions and improves capital efficiency. Achieving greater scale by reducing complexity, Ark and Spark perform the same function as traditional channel factories with new designs and additional capabilities based on shared UTXOs.  Channel Factories 101 Channel factories have been around since the inception of Lightning. A factory is a multiparty contract where multiple users (not just two, as in a Dryja-Poon channel) cooperatively lock funds in a single multisig UTXO. They can open, close and update channels off-chain without updating the blockchain for each operation. Only when participants leave or the factory dissolves is an on-chain transaction…
Share
BitcoinEthereumNews2025/09/18 00:09
SOLANA NETWORK Withstands 6 Tbps DDoS Without Downtime

SOLANA NETWORK Withstands 6 Tbps DDoS Without Downtime

The post SOLANA NETWORK Withstands 6 Tbps DDoS Without Downtime appeared on BitcoinEthereumNews.com. In a pivotal week for crypto infrastructure, the Solana network
Share
BitcoinEthereumNews2025/12/16 20:44
Crucial Fed Rate Cut: October Probability Surges to 94%

Crucial Fed Rate Cut: October Probability Surges to 94%

BitcoinWorld Crucial Fed Rate Cut: October Probability Surges to 94% The financial world is buzzing with a significant development: the probability of a Fed rate cut in October has just seen a dramatic increase. This isn’t just a minor shift; it’s a monumental change that could ripple through global markets, including the dynamic cryptocurrency space. For anyone tracking economic indicators and their impact on investments, this update from the U.S. interest rate futures market is absolutely crucial. What Just Happened? Unpacking the FOMC Statement’s Impact Following the latest Federal Open Market Committee (FOMC) statement, market sentiment has decisively shifted. Before the announcement, the U.S. interest rate futures market had priced in a 71.6% chance of an October rate cut. However, after the statement, this figure surged to an astounding 94%. This jump indicates that traders and analysts are now overwhelmingly confident that the Federal Reserve will lower interest rates next month. Such a high probability suggests a strong consensus emerging from the Fed’s latest communications and economic outlook. A Fed rate cut typically means cheaper borrowing costs for businesses and consumers, which can stimulate economic activity. But what does this really signify for investors, especially those in the digital asset realm? Why is a Fed Rate Cut So Significant for Markets? When the Federal Reserve adjusts interest rates, it sends powerful signals across the entire financial ecosystem. A rate cut generally implies a more accommodative monetary policy, often enacted to boost economic growth or combat deflationary pressures. Impact on Traditional Markets: Stocks: Lower interest rates can make borrowing cheaper for companies, potentially boosting earnings and making stocks more attractive compared to bonds. Bonds: Existing bonds with higher yields might become more valuable, but new bonds will likely offer lower returns. Dollar Strength: A rate cut can weaken the U.S. dollar, making exports cheaper and potentially benefiting multinational corporations. Potential for Cryptocurrency Markets: The cryptocurrency market, while often seen as uncorrelated, can still react significantly to macro-economic shifts. A Fed rate cut could be interpreted as: Increased Risk Appetite: With traditional investments offering lower returns, investors might seek higher-yielding or more volatile assets like cryptocurrencies. Inflation Hedge Narrative: If rate cuts are perceived as a precursor to inflation, assets like Bitcoin, often dubbed “digital gold,” could gain traction as an inflation hedge. Liquidity Influx: A more accommodative monetary environment generally means more liquidity in the financial system, some of which could flow into digital assets. Looking Ahead: What Could This Mean for Your Portfolio? While the 94% probability for a Fed rate cut in October is compelling, it’s essential to consider the nuances. Market probabilities can shift, and the Fed’s ultimate decision will depend on incoming economic data. Actionable Insights: Stay Informed: Continue to monitor economic reports, inflation data, and future Fed statements. Diversify: A diversified portfolio can help mitigate risks associated with sudden market shifts. Assess Risk Tolerance: Understand how a potential rate cut might affect your specific investments and adjust your strategy accordingly. This increased likelihood of a Fed rate cut presents both opportunities and challenges. It underscores the interconnectedness of traditional finance and the emerging digital asset space. Investors should remain vigilant and prepared for potential volatility. The financial landscape is always evolving, and the significant surge in the probability of an October Fed rate cut is a clear signal of impending change. From stimulating economic growth to potentially fueling interest in digital assets, the implications are vast. Staying informed and strategically positioned will be key as we approach this crucial decision point. The market is now almost certain of a rate cut, and understanding its potential ripple effects is paramount for every investor. Frequently Asked Questions (FAQs) Q1: What is the Federal Open Market Committee (FOMC)? A1: The FOMC is the monetary policymaking body of the Federal Reserve System. It sets the federal funds rate, which influences other interest rates and economic conditions. Q2: How does a Fed rate cut impact the U.S. dollar? A2: A rate cut typically makes the U.S. dollar less attractive to foreign investors seeking higher returns, potentially leading to a weakening of the dollar against other currencies. Q3: Why might a Fed rate cut be good for cryptocurrency? A3: Lower interest rates can reduce the appeal of traditional investments, encouraging investors to seek higher returns in alternative assets like cryptocurrencies. It can also be seen as a sign of increased liquidity or potential inflation, benefiting assets like Bitcoin. Q4: Is a 94% probability a guarantee of a rate cut? A4: While a 94% probability is very high, it is not a guarantee. Market probabilities reflect current sentiment and data, but the Federal Reserve’s final decision will depend on all available economic information leading up to their meeting. Q5: What should investors do in response to this news? A5: Investors should stay informed about economic developments, review their portfolio diversification, and assess their risk tolerance. Consider how potential changes in interest rates might affect different asset classes and adjust strategies as needed. Did you find this analysis helpful? Share this article with your network to keep others informed about the potential impact of the upcoming Fed rate cut and its implications for the financial markets! To learn more about the latest crypto market trends, explore our article on key developments shaping Bitcoin price action. This post Crucial Fed Rate Cut: October Probability Surges to 94% first appeared on BitcoinWorld.
Share
Coinstats2025/09/18 02:25