The post The Critical Security Play You Can’t Miss in the AI Era appeared on BitcoinEthereumNews.com. The Watershed Moment That Changed Blockchain Security Forever Singapore – Blockman PR – December 2025 marked a turning point. Anthropic’s research team published findings that sent shockwaves through crypto: AI systems could successfully exploit smart contract vulnerabilities with 55.88% accuracy, simulating $4.6 million in potential theft from real-world contracts. The implications were existential. If AI could systematically identify and exploit vulnerabilities at scale, the entire blockchain ecosystem—processing over $1 trillion in transactions annually—faced an unprecedented threat. Traditional security tools couldn’t keep pace. Human auditors, already stretched thin reviewing less than 20% of deployed contracts, had no chance against autonomous AI attackers. But here’s what most people missed: Anthropic’s breakthrough wasn’t just validation of the threat. It was validation of the solution space. And one company had already been building that solution for six months—and winning. The Defense Was Already Operational While Anthropic demonstrated AI could break smart contracts in simulation, AgentLISA had been defending them in production. By the time Anthropic’s paper dropped, AgentLISA’s multi-agent system had detected over $7.3 million in actual vulnerabilities across real protocols managing billions in assets. The asymmetry is critical: Anthropic proved the threat is real and AI-powered. AgentLISA proved the defense is real, AI-powered, and already operational at scale. This matters because Anthropic’s research exposed something fundamental: the AI security race will be won by whoever controls the training data. And AgentLISA just lapped the entire field. LISA-Bench: The Data Moat Nobody Saw Coming https://github.com/agentlisa/bench Anthropic’s team used SCONE-bench—a dataset of 413 vulnerable smart contracts—to train their attack models. Solid methodology, respectable work. But fundamentally constrained by data scarcity. AgentLISA’s response was devastating: LISA-Bench, containing 23,959 professionally verified vulnerability records spanning 2016-2024—the largest curated smart contract vulnerability dataset ever assembled. It’s not just 60 times larger than SCONE-bench. It includes 10,185 code-complete vulnerability cases… The post The Critical Security Play You Can’t Miss in the AI Era appeared on BitcoinEthereumNews.com. The Watershed Moment That Changed Blockchain Security Forever Singapore – Blockman PR – December 2025 marked a turning point. Anthropic’s research team published findings that sent shockwaves through crypto: AI systems could successfully exploit smart contract vulnerabilities with 55.88% accuracy, simulating $4.6 million in potential theft from real-world contracts. The implications were existential. If AI could systematically identify and exploit vulnerabilities at scale, the entire blockchain ecosystem—processing over $1 trillion in transactions annually—faced an unprecedented threat. Traditional security tools couldn’t keep pace. Human auditors, already stretched thin reviewing less than 20% of deployed contracts, had no chance against autonomous AI attackers. But here’s what most people missed: Anthropic’s breakthrough wasn’t just validation of the threat. It was validation of the solution space. And one company had already been building that solution for six months—and winning. The Defense Was Already Operational While Anthropic demonstrated AI could break smart contracts in simulation, AgentLISA had been defending them in production. By the time Anthropic’s paper dropped, AgentLISA’s multi-agent system had detected over $7.3 million in actual vulnerabilities across real protocols managing billions in assets. The asymmetry is critical: Anthropic proved the threat is real and AI-powered. AgentLISA proved the defense is real, AI-powered, and already operational at scale. This matters because Anthropic’s research exposed something fundamental: the AI security race will be won by whoever controls the training data. And AgentLISA just lapped the entire field. LISA-Bench: The Data Moat Nobody Saw Coming https://github.com/agentlisa/bench Anthropic’s team used SCONE-bench—a dataset of 413 vulnerable smart contracts—to train their attack models. Solid methodology, respectable work. But fundamentally constrained by data scarcity. AgentLISA’s response was devastating: LISA-Bench, containing 23,959 professionally verified vulnerability records spanning 2016-2024—the largest curated smart contract vulnerability dataset ever assembled. It’s not just 60 times larger than SCONE-bench. It includes 10,185 code-complete vulnerability cases…

The Critical Security Play You Can’t Miss in the AI Era

The Watershed Moment That Changed Blockchain Security Forever

Singapore – Blockman PR – December 2025 marked a turning point. Anthropic’s research team published findings that sent shockwaves through crypto: AI systems could successfully exploit smart contract vulnerabilities with 55.88% accuracy, simulating $4.6 million in potential theft from real-world contracts.

The implications were existential. If AI could systematically identify and exploit vulnerabilities at scale, the entire blockchain ecosystem—processing over $1 trillion in transactions annually—faced an unprecedented threat. Traditional security tools couldn’t keep pace. Human auditors, already stretched thin reviewing less than 20% of deployed contracts, had no chance against autonomous AI attackers.

But here’s what most people missed: Anthropic’s breakthrough wasn’t just validation of the threat. It was validation of the solution space. And one company had already been building that solution for six months—and winning.

The Defense Was Already Operational

While Anthropic demonstrated AI could break smart contracts in simulation, AgentLISA had been defending them in production. By the time Anthropic’s paper dropped, AgentLISA’s multi-agent system had detected over $7.3 million in actual vulnerabilities across real protocols managing billions in assets.

The asymmetry is critical: Anthropic proved the threat is real and AI-powered. AgentLISA proved the defense is real, AI-powered, and already operational at scale.

This matters because Anthropic’s research exposed something fundamental: the AI security race will be won by whoever controls the training data. And AgentLISA just lapped the entire field.

LISA-Bench: The Data Moat Nobody Saw Coming

https://github.com/agentlisa/bench

Anthropic’s team used SCONE-bench—a dataset of 413 vulnerable smart contracts—to train their attack models. Solid methodology, respectable work. But fundamentally constrained by data scarcity.

AgentLISA’s response was devastating: LISA-Bench, containing 23,959 professionally verified vulnerability records spanning 2016-2024—the largest curated smart contract vulnerability dataset ever assembled.

It’s not just 60 times larger than SCONE-bench. It includes 10,185 code-complete vulnerability cases for direct AI training—25 times more usable data than any competing dataset.

Here’s why this matters: AI models are only as sophisticated as their training data. Anthropic’s research proved AI can find vulnerabilities, but their model trained on 413 examples. AgentLISA’s defensive models train on 23,959 professionally verified cases spanning eight years of vulnerability evolution.

In the AI security arms race Anthropic just announced, AgentLISA showed up with a 60x ammunition advantage.

Three Characteristics That Make LISA-Bench Unstoppable

1. Professional Verification at Industrial Scale

Every entry reviewed by security auditors from 3,086 specialists across 19 authoritative platforms—Code4rena (38.1%), OpenZeppelin (11.0%), Halborn (9.2%), Sherlock (7.7%), TrailOfBits (6.7%), and 14 others. This represents thousands of hours of expert analysis now available for AI training—a head start competitors would need years to replicate.

2. Historical Depth for Pattern Prediction

Eight years of data (2016-2024) covering 1,219 protocols enables something Anthropic’s attack models cannot: recognizing how vulnerabilities evolve. A 2024 exploit often has precedents in 2018 attacks following similar logic patterns. When new vulnerability classes emerge, models trained on LISA-Bench can predict variations before they’re exploited in the wild.

Without this temporal depth, AI attack models can only exploit known patterns. Defensive models trained on LISA-Bench can anticipate what’s coming next.

3. Complete Vulnerability Context

42.5% of records include complete vulnerable code snippets—actual Solidity or Rust code containing flaws, not just descriptions. This enables training code-reasoning models that understand not just what vulnerabilities look like, but why they exist and how they interact with surrounding code.

Distribution spans 3,902 high-risk cases (16.3%), 7,375 medium-risk (30.8%), 10,303 low-risk (43.0%), and 2,347 gas optimizations (9.8%)—mirroring how professional auditors actually work.

Why the AI Security Arms Race Favors Defense

Anthropic’s research revealed the offensive capability, but the economics decisively favor defense:

Attack models need to be right once. But they operate in an adversarial environment where a single successful exploit triggers immediate countermeasures, patches, and systemic upgrades across the entire ecosystem.

Defensive models need to be right consistently. But every scan improves the model, every detected vulnerability strengthens the training data, and every protocol protected creates network effects that attract more users—generating more data, improving accuracy further.

This is a flywheel that compounds. AgentLISA has already processed millions of contracts. By the time attack models catch up, defensive models will be exponentially more sophisticated.

The $5 Billion Problem Nobody Could Address—Until Now

The blockchain security crisis is quantifiable: over $5 billion lost to exploits in 2024 alone, with 200,000 smart contracts deploying monthly and 80% remaining unaudited.

The root cause isn’t negligence—it’s brutal economics. Traditional audits cost $15,000-$50,000 and require 3-5 weeks of manual review. For the vast majority of Web3 builders, this represents an existential barrier. If your development budget is $20,000, spending $15,000 on security isn’t a decision—it’s a death sentence for your project.

This creates structural market failure. Approximately 160,000 smart contracts deploy annually without any security review, representing a $5+ billion addressable loss prevention opportunity that existing infrastructure physically cannot serve.

Anthropic proved AI can systematically exploit this gap. AgentLISA proved AI can systematically close it.

What Is AgentLISA?

AgentLISA is the world’s first Agentic Security Operating System for Web3—an AI-powered platform that delivers professional-grade smart contract security analysis in minutes instead of weeks, at a fraction of traditional audit costs.

Built on peer-reviewed research from Nanyang Technological University’s Cyber Security Lab, AgentLISA represents a fundamental reimagining of blockchain security. Rather than treating security as a one-time checkpoint before deployment, AgentLISA enables continuous, automated multi-agentic security with deep reasoning capabilities that integrates seamlessly into modern development workflows.

The results: 9/10 OWASP Top 10 vulnerabilities detected (vs. 5/10 for traditional analyzers), 100% success rate on complex real-world audits, $7.3+ million in prevented exploits, 99% time reduction (minutes vs. weeks), 90% cost reduction ($0.50-$5 per scan vs. $15,000+).

The Core Innovation: Multi-Agent AI Architecture

Real-world vulnerabilities rarely exist in isolation. They emerge from complex interactions between contracts, unexpected state transitions, and subtle business logic flaws that static analysis tools systematically miss.

Anthropic’s research used general-purpose AI models. AgentLISA deployed specialized agents working in coordination:

  • Reentrancy Agent: Analyzes external call sequences and state changes
  • Access Control Agent: Validates permission models and authorization logic
  • Price Manipulation Agent: Examines oracle dependencies and price calculations
  • State Consistency Agent: Traces state transitions across execution paths
  • Business Logic Agent: Validates implementation matches intended protocol behavior

These agents don’t work in isolation—they collaborate, share findings, and cross-validate results, mirroring elite security research teams. When one agent flags a suspicious pattern, others investigate related code paths to determine genuine exploit vectors—exactly the coordination required to defend against AI attacks.

Traditional static analysis tools achieve only 3-8% recall on real-world vulnerabilities, missing 92-97% of actual bugs. General-purpose AI models hallucinate false vulnerabilities while missing novel patterns. AgentLISA’s architecture transcends both limitations.

Real-World Validation: The Exploits That Didn’t Happen

AgentLISA’s efficacy isn’t theoretical—it’s proven in production:

Arcadia Finance ($3.5M): Detected accounting flaw in lending protocol that could have resulted in $3.5+ million exploit during liquidation events—a business logic vulnerability invisible to static analysis tools.

Taiko Protocol: Identified three critical governance vulnerabilities enabling voting manipulation, confirmed by Taiko’s CEO and patched before deployment.

Virtuals Protocol: Discovered incorrect slippage protection during Code4rena competition, preventing potential millions in sandwich attacks and MEV extraction.

Since launching June 2025, AgentLISA has analyzed contracts that could have resulted in over $10 billion in potential losses. This isn’t theoretical—it’s based on actual vulnerabilities detected in production code managing real capital.

The Distribution Moat: Why AgentLISA Becomes Infrastructure

In an AI attack landscape, security cannot be optional or manual. It must be automatic, continuous, and embedded in workflows. AgentLISA’s integration strategy makes this inevitable:

IDE Integration (VSCode, Cursor): Real-time vulnerability detection as code is written—catching AI-exploitable flaws at the moment of creation, when fixes are trivial and context is fresh.

GitHub Automation: Continuous security checks on every PR—ensuring no vulnerable code reaches production. Security becomes part of the development conversation, not a separate process that happens later.

CI/CD Pipeline Integration: Automated security gates blocking deployments with critical vulnerabilities while maintaining deployment velocity. The cost of fixing a vulnerability in CI/CD is measured in minutes; in production, it’s measured in millions.

Model Context Protocol (MCP): Enabling AI coding assistants (GitHub Copilot, Cursor AI) to automatically invoke AgentLISA—creating security checks inside the very AI tools that might otherwise generate vulnerable code.

x402 Permissionless Access: Frictionless API access enabling autonomous AI agents to validate security without human intervention—the only architecture that scales to match AI-powered threats.

This isn’t just convenient—it’s the only architecture that can keep pace with AI-generated attacks. When security happens automatically in every tool developers use, defense scales at the speed of development.

Why x402 Integration Is Strategically Brilliant

In November 2025, AgentLISA pioneered HTTP 402 Payment Required implementation—dormant for 25 years—enabling pay-per-use API access without accounts, API keys, or approvals.

Within weeks, AgentLISA became the #4 ranked x402 protocol with 3,578 paying developers—2,500% growth validating that frictionless access drives adoption.

Here’s why this matters in an AI attack context: Anthropic proved AI attacks can be automated. Defense must be equally automated. x402 enables any AI agent, development tool, or autonomous system to invoke security checks without human intervention.

Traditional API monetization creates friction that kills adoption: account creation, API key management, manual approvals, billing setup. x402 eliminates all of it. Developers simply call AgentLISA’s API, and micropayments flow automatically through the protocol layer.

This distribution advantage compounds. Every integration becomes a permanent channel, creating network effects competitors cannot replicate.

The Three-Layer Competitive Moat

Layer 1: Technical Moat

  • TrustLLM: Purpose-built for smart contract security, not fine-tuned from general-purpose models. Replicating TrustLLM would require years of research and millions in compute costs.
  • Multi-Agent Coordination: Detects vulnerabilities emerging from complex contract interactions—something static analyzers cannot do by design and general-purpose AI tools cannot do without specialized architecture.
  • LISA-Bench: 60x data advantage over competing benchmarks. Even if competitors match quantity, they cannot replicate the historical depth (2016-2024) enabling pattern recognition across vulnerability evolution.

Layer 2: Distribution Moat

  • IDE Integration: Developers encounter AgentLISA at the moment of code creation, creating default status competitors must actively displace.
  • GitHub Automation: Embeds security into existing workflows, creating high switching costs—reconfiguring tools, retraining teams, disrupting processes.
  • x402 Permissionless Access: Enables autonomous integration without human intervention—decisive advantage as AI-generated code becomes ubiquitous.

Layer 3: Ecosystem Moat

  • Multi-Chain Support: 20+ networks including Ethereum, Polygon, Solana, Arbitrum, Base, BNB Chain—developers use AgentLISA regardless of blockchain choice.
  • Strategic Partnerships: Established audit firms (CertiK, BlockSec, Certora, HackenProof) use AgentLISA for initial triage, creating mutual incentives that lock in relationships.
  • Developer Platform Integration: Distribution channels requiring months of engineering work and relationship building that late entrants must overcome.

The $12M Investment Thesis: Why Smart Money Moved Fast

Following Anthropic’s research, AgentLISA raised $12 million from Redpoint Ventures, UoB Venture Management, Signum Capital, NGC Ventures, Hash Global, LongHash Ventures, and others. The thesis:

1. Anthropic Validated the Threat: AI can systematically exploit smart contracts. The entire blockchain ecosystem needs AI-powered defense.

2. AgentLISA Validated the Solution: Already operational in production with $7.3M+ in prevented exploits, 90,000+ developer teams, 4,000+ premium subscribers generating $1M+ annualized revenue.

3. The Data Moat Is Insurmountable: LISA-Bench’s 60x advantage compounds—every scan improves accuracy, attracting more developers, generating more scans. Late entrants cannot catch up.

4. Distribution Creates Lock-In: Workflow integration makes AgentLISA default infrastructure. Switching requires reconfiguring multiple systems, retraining teams, disrupting processes.

5. Economics Are Compelling: 80%+ gross margins, low customer acquisition costs via viral adoption, clear path to profitability with $6.5M projected revenue for 2026.

6. The Team Is World-Class: Co-founder Dr. Izaiah Sun (NTU research fellow with peer-reviewed security publications including GPTScan, PropertyGPT, and LLM4Vuln), Andy Deng (decade of software engineering leadership at INFORM GmbH and MetaTrust Labs), backed by engineers from Meta, Aptos, and CertiK who’ve collectively secured billions in digital assets.

BNB Chain Integration: Security at Ecosystem Scale

December 2025 integration with BNB Chain demonstrates the go-to-market strategy: become default security infrastructure for major ecosystems.

https://dappbay.bnbchain.org/detail/agentlisa

Exclusive Developer Benefits:

  • Five Free Scans: Removing economic barriers for every BNB Chain developer (up to 5,000 lines per scan)
  • 20% Lifetime Discount: Making ongoing security sustainable at $0.80 per scan
  • Priority Support: Grant projects qualify for $1,000 professional audits (vs. $15,000+ market rate)
  • x402 Integration: Enabling autonomous AI agent security checks without friction

With hundreds of thousands of contracts deploying on BNB Chain annually, this partnership creates massive distribution while validating multi-chain strategy.

The $LISA Token: Economic Coordination for the Security Ecosystem

The $LISA token aligns incentives across developers, security researchers, validators, and protocol users:

Current Utility:

  • Platform Payment: 20-30% discount vs. fiat for audits, premium features, API access
  • Governance: DAO voting on development priorities, fee structures, ecosystem allocation
  • Staking: 8-15% APY from platform fees and ecosystem growth

Planned Utility:

  • Bug Bounty Rewards: Security researchers earn $LISA for vulnerability discovery
  • Threat Intelligence Curation: Validators earn 8-15% APY plus reputation multipliers (1.5-3x)
  • AI Agent Marketplace: Settlement and listing/staking token with 5% platform fee
  • Premium Access: Unlocks advanced threat intelligence and historical vulnerability data
  • Tiered Benefits: 15-50% fee reduction for 10K/50K/100K+ $LISA stakes

The Roadmap: Matching AI Attacks with AI Defense

Q4 2025: Multi-chain audit-grade analysis, developer workflow tooling (IDE plugins, GitHub integration), Move language support for Sui and Aptos, $LISA token generation event.

Q1 2026: AI-powered auto-remediation with fix suggestions, auditor collaboration platform enabling hybrid workflows where AI handles heavy lifting and humans provide regulatory credibility, white-label capabilities for Big 4 accounting firms.

Q2 2026: Real-time on-chain monitoring for suspicious activity, economic exploit simulation modeling flash loans and oracle manipulation, regulatory-ready reports mapping to MAS/SEC/MiCA frameworks, enterprise dashboards for multi-project tracking.

2026+: Formal verification integration providing mathematical correctness proofs, expansion across new Layer 1/Layer 2 chains and languages, community-driven AI model development creating decentralized security intelligence, expansion to traditional software security addressing the $10+ billion application security market.

Each milestone directly addresses the AI attack landscape Anthropic revealed: continuous monitoring, automated remediation, and formal verification—the only architecture that can match AI-powered exploitation.

Why This Matters Now

Anthropic didn’t just publish interesting research. They announced a new era in blockchain security where AI systematically exploits vulnerabilities at scale. The question isn’t whether this will happen—it’s already happening. The question is whether defense can keep pace.

AgentLISA’s answer: Defense is already winning, with a 60x data advantage, proven production results protecting $10+ billion in analyzed assets, and distribution infrastructure that embeds security into every development workflow.

The asymmetry is decisive: Attack models improve linearly with research. Defensive models improve exponentially with network effects. Every scan strengthens the training data. Every prevented exploit validates the approach. Every integration creates switching costs.

In the AI security arms race, AgentLISA didn’t just show up prepared—they showed up with weapons competitors will spend years trying to build. The data moat is insurmountable. The distribution channels are locked in. The network effects are compounding.

Anthropic showed us the threat. AgentLISA showed us why defense wins—and why smart money is betting on the company that turned AI’s greatest vulnerability into blockchain’s strongest defense.


Get Started:

Disclaimer: TheNewsCrypto does not endorse any content on this page. The content depicted in this Press Release does not represent any investment advice. TheNewsCrypto recommends our readers to make decisions based on their own research. TheNewsCrypto is not accountable for any damage or loss related to content, products, or services stated in this Press Release.

Source: https://thenewscrypto.com/deep-dive-into-agentlisa-the-critical-security-play-you-cant-miss-in-the-ai-era/

Market Opportunity
PlaysOut Logo
PlaysOut Price(PLAY)
$0.09389
$0.09389$0.09389
-1.26%
USD
PlaysOut (PLAY) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

The UA Sprinkler Fitters Local 669 JATC – Notice of Privacy Incident

The UA Sprinkler Fitters Local 669 JATC – Notice of Privacy Incident

Landover, Maryland, February 6, 2026– The UA Sprinkler Fitters Local 669 Joint Apprenticeship and Training Committee (“JATC”) is providing notice of an event that
Share
AI Journal2026/02/07 07:30
CME pushes Solana, XRP into derivatives spotlight with new options

CME pushes Solana, XRP into derivatives spotlight with new options

CME Group is launching options for Solana and XRP futures this October. The move signals a major shift, acknowledging that institutional liquidity is now firmly expanding beyond the established dominance of Bitcoin and Ether. According to a press release dated…
Share
Crypto.news2025/09/18 01:18
Ethereum koers toont zeldzaam dubbel koopsignaal en richt zich op $4.550

Ethereum koers toont zeldzaam dubbel koopsignaal en richt zich op $4.550

Connect met Like-minded Crypto Enthusiasts! Connect op Discord! Check onze Discord   Ethereum laat op de uurgrafiek twee opeenvolgende TD Sequential koopsignalen zien. Deze indicator meet uitputting in een trend en geeft vaak een signaal dat de verkoopdruk kan afnemen. Dit dubbele signaal verschijnt rond het niveau van $4.516, waar de ETH prijs kortstondig steun vindt. Dit type formatie komt zelden voor en wordt daarom extra nauwlettend gevolgd. Wat gaat de Ethereum koers hiermee doen? Ethereum koers test steun rond $4.516 De scherpe daling van de Ethereum koers vanaf de prijszone rond $4.800 bracht de ETH prijs in korte tijd naar ongeveer $4.516. Op dit niveau trad duidelijke koopactiviteit op, waardoor de neerwaartse beweging tijdelijk werd gestopt. Het dubbele signaal dat door de TD Sequential indicator is gegenereerd, viel precies samen met dit prijspunt. De TD Sequential is opgebouwd uit negen candles die een trend meetellen. Wanneer de negende candle verschijnt, kan dit duiden op een trendomslag. In dit geval verschenen zelfs twee signalen kort na elkaar, wat aangeeft dat de verkoopdruk mogelijk uitgeput is. Het feit dat dit gebeurde in een zone waar ETH kopers actief bleven, maakt het patroon extra opvallend. TD Sequential just flashed two buy signals for Ethereum $ETH! pic.twitter.com/JPO8EhiEPi — Ali (@ali_charts) September 16, 2025 Welke crypto nu kopen?Lees onze uitgebreide gids en leer welke crypto nu kopen verstandig kan zijn! Welke crypto nu kopen? Fed-voorzitter Jerome Powell heeft aangekondigd dat de rentes binnenkort zomaar eens omlaag zouden kunnen gaan, en tegelijkertijd blijft BlackRock volop crypto kopen, en dus lijkt de markt klaar om te gaan stijgen. Eén vraag komt telkens terug: welke crypto moet je nu kopen? In dit artikel bespreken we de munten die… Continue reading Ethereum koers toont zeldzaam dubbel koopsignaal en richt zich op $4.550 document.addEventListener('DOMContentLoaded', function() { var screenWidth = window.innerWidth; var excerpts = document.querySelectorAll('.lees-ook-description'); excerpts.forEach(function(description) { var excerpt = description.getAttribute('data-description'); var wordLimit = screenWidth wordLimit) { var trimmedDescription = excerpt.split(' ').slice(0, wordLimit).join(' ') + '...'; description.textContent = trimmedDescription; } }); }); Technische indicatoren schetsen herstelkans voor ETH Naast de dubbele koopsignalen verstrekken ook andere indicatoren belangrijke aanwijzingen. Tijdens de daling van de ETH koers waren grote rode candles zichtbaar, maar na de test van $4.516 stabiliseerde de Ethereum koers. Dit wijst op een mogelijke verschuiving in het evenwicht tussen de bears en bulls. Als deze opwaartse beweging doorzet, liggen de eerste weerstanden rond $4.550. Daarboven wacht een sterkere zone rond $4.650. Deze niveaus zijn in eerdere Ethereum sessies al meerdere keren getest. Een doorbraak zou ruimte openen richting de all-time high van ETH rond $4.953. Wanneer de prijs toch opnieuw onder $4.516 zakt, liggen er zones rond $4.500 en $4.450 waar grotere kooporders worden verwacht. Deze niveaus kunnen als een vangnet fungeren, mocht de druk opnieuw toenemen. Marktdynamiek bevestigt technische indicatoren De huidige situatie volgt op een bredere correctie in de cryptomarkt. Verschillende vooraanstaande crypto tokens zagen scherpe koersdalingen, waarna traders op zoek gingen naar signalen voor een mogelijke ommekeer. Dat juist Ethereum nu een dubbel TD Sequential signaal toont, versterkt de interesse in dit scenario. Fundamenteel blijft Ethereum sterk. Het aantal ETH tokens dat via staking is vastgezet, blijft groeien. Dat verkleint de vrije circulatie en vermindert verkoopdruk. Tegelijk blijft het netwerk intensief gebruikt voor DeFi, NFT’s en stablecoins. Deze activiteiten zorgen voor een stabiele vraag naar ETH, ook wanneer de prijs tijdelijk onder druk staat. Fundamentele drijfveren achter de Ethereum koers De Ethereum koers wordt echter niet alleen bepaald door candles en patronen, maar ook door bredere factoren. Een stijgend percentage van de totale ETH supply staat vast in staking contracten. Hierdoor neemt de liquiditeit op exchanges af. Dit kan prijsschommelingen versterken wanneer er plotseling meer koopdruk ontstaat. Daarnaast is Ethereum nog steeds het grootste smart contract platform. Nieuwe standaarden zoals ERC-8004 en ontwikkelingen rond layer-2 oplossingen houden de activiteit hoog. Deze technologische vooruitgang kan de waardepropositie ondersteunen en zo indirect bijdragen aan een ETH prijsherstel. Het belang van de korte termijn dynamiek De komende handelsdagen zullen duidelijk maken of de bulls genoeg kracht hebben om door de weerstandszone rond $4.550 te breken. Voor de bears ligt de focus juist op het verdedigen van de prijsregio rond $4.516. De whales, die met grote handelsorders opereren, kunnen hierin een beslissende rol spelen. Het dubbele TD Sequential signaal blijft hoe dan ook een zeldzame gebeurtenis. Voor cryptoanalisten vormt het een objectief aanknopingspunt om de kracht van de huidige Ethereum trend te toetsen. Vooruitblik op de ETH koers Ethereum liet twee opeenvolgende TD Sequential signalen zien op de uurgrafiek, iets wat zelden voorkomt. Deze formatie viel samen met steun rond $4.516, waar de bulls actief werden. Als de Ethereum koers boven dit niveau blijft, kan er ruimte ontstaan richting $4.550 en mogelijk $4.650. Zakt de prijs toch opnieuw onder $4.516, dan komen $4.500 en $4.450 in beeld als nieuwe steunzones. De combinatie van zeldzame indicatoren en een sterke fundamentele basis maakt Ethereum interessant voor zowel technische als fundamentele analyses. Of de bulls het momentum echt kunnen overnemen, zal blijken zodra de Ethereum koers de eerstvolgende weerstanden opnieuw test. Koop je crypto via Best Wallet Best wallet is een topklasse crypto wallet waarmee je anoniem crypto kan kopen. Met meer dan 60 chains gesupport kan je al je main crypto coins aanschaffen via Best Wallet. Best wallet - betrouwbare en anonieme wallet Best wallet - betrouwbare en anonieme wallet Meer dan 60 chains beschikbaar voor alle crypto Vroege toegang tot nieuwe projecten Hoge staking belongingen Lage transactiekosten Best wallet review Koop nu via Best Wallet Let op: cryptocurrency is een zeer volatiele en ongereguleerde investering. Doe je eigen onderzoek. Het bericht Ethereum koers toont zeldzaam dubbel koopsignaal en richt zich op $4.550 is geschreven door Dirk van Haaster en verscheen als eerst op Bitcoinmagazine.nl.
Share
Coinstats2025/09/17 23:31