A real-time data/ML platform builder builds a tool to help teams find out what's wrong with an attribute. The tool is serverless, low-maintenance, and queries terabytesA real-time data/ML platform builder builds a tool to help teams find out what's wrong with an attribute. The tool is serverless, low-maintenance, and queries terabytes

Inside a Low-Cost, Serverless Data Lineage System Built on AWS

Problem Statement

I build and operate real-time data/ML platforms, and one recurring pain I see inside any data org is this: “Why does this attribute have this value?” When a company name, industry, or revenue looks wrong, investigations often stall without engineering help. I wanted a way for analysts, support, and product folks to self-serve the “why,” with history and evidence, without waking up an engineer.

This is the blueprint I shipped: A serverless, low‑maintenance traceability service that queries terabytes in seconds and costs peanuts.

What this tool needed to do (for non‑engineers)

  • Explain a value: Why does attribute X for company Y equal Z right now?
  • Show the history: When did it change? What were the past versions?
  • Show evidence: Which sources and rules produced that value?
  • Be self‑serve: An API + simple UI so teams can investigate without engineers

The architecture (serverless on purpose)

  • Amazon API Gateway: a secure front door for the API

  • AWS Lambda: stateless request handlers (no idle compute to pay for)

  • Amazon S3 + Apache Hudi: cheap storage with time travel and upserts

  • AWS Glue Data Catalog: schema and partition metadata

  • Amazon Athena: SQL over S3/Hudi, pay-per-data‑scanned, zero infra

\

Why these choices?

  • Cost: storage on S3 is cheap; Athena charges only for bytes scanned; Lambda is pay‑per‑invocation
  • Scale: S3/Hudi trivially supports TB→PB, and Athena scales horizontally
  • Maintenance: no fleet to patch; infra footprint stays tiny as usage grows

:::info Data layout: performance is a data problem (not a compute problem) Athena is fast when it reads almost nothing, and slow when it plans or scans too much. The entire project hinged on getting partitions and projection right.

:::

Partitioning strategy (based on query patterns)

  • created_date (date): most queries are time‑bounded
  • attributename (enum): employees, revenue, linkedinurl, founded_year, industry, etc.
  • entityidmod (integer bucket): mod(entity_id, N) to spread hot keys evenly

This limits data scanned and, more importantly, narrows what partition metadata Athena needs to consider.

The three things that made it fast:

  1. Partitioning:

  2. Put only frequently filtered columns in the partition spec.

  3. Use integer bucketing (mod) for high‑cardinality keys like entity_id.

    \

  4. Partition Indexing (first win, partial):

  5. We enabled partition indexing so Athena could prune partition metadata faster during planning.

  6. This helped until the partition count grew large; planning was still the dominant cost.

    \

  7. Partition Projection (the actual game‑changer):

  8. Instead of asking Glue to store millions of partitions, we taught Athena how partitions are shaped.

  9. Result: planning time close to zero; queries jumped from “slow-ish with growth” to consistently 1–2 seconds for typical workloads.

\ Athena TBLPROPERTIES (minimal example)

TBLPROPERTIES ( 'projection.enabled'='true', 'projection.attribute_name.type'='enum', 'projection.attribute_name.values'='employees,revenue,linkedin_url,founded_year,industry', 'projection.entity_id_mod.type'='integer', 'projection.entity_id_mod.interval'='1', 'projection.entity_id_mod.range'='0,9', 'projection.created_date.type'='date', 'projection.created_date.format'='yyyy-MM-dd', 'projection.created_date.interval'='1', 'projection.created_date.interval.unit'='days', 'projection.created_date.range'='2022-01-01,NOW' )

\

Why this works

  • Athena no longer fetches a huge partition list from Glue; it calculates partitions on the fly from the rules above
  • Scanning drops to “only the files that match the constraints”
  • Planning time becomes negligible, even as data and partitions grow

\

What surprised me (and what was hard)

  • The “gotcha” was query planning, not compute. We often optimize engines, but here the slowest part was enumerating partitions. Partition projection solved the right problem.
  • Picking partition keys is half art, half science. Over-partition and you drown in metadata; under-partition and you pay per scan. Start from your top 3 query predicates and work backwards.
  • Enum partitions are underrated. For low‑cardinality domains (attribute_name), enum projection is both simple and fast.
  • Bucketing (via mod) is pragmatic. True bucketing support is limited in Athena, but a mod-based integer partition gets you most of the benefits.

\

Cost & latency (real numbers)

  • Typical queries: 1–2 seconds end‑to‑end (Lambda cold starts excluded)
  • Data size: multiple TB in S3/Hudi
  • Cost: pennies per 100s of requests (Athena scan + Lambda invocations)
  • Ops: near‑zero—no servers, no manual compaction beyond Hudi maintenance cadence

\

Common pitfalls (so you can skip them)

  • Don’t partition by high‑cardinality fields directly (e.g., raw entity_id); you’ll explode the partition count
  • Don’t skip projection if you expect partitions to grow; indexing alone won’t save you
  • Don’t save partition metadata for every key if a rule can generate it (projection exists exactly for that reason)
  • Don’t leave Glue schemas to drift; version them and validate in CI

\

Try this at home (a minimal checklist)

  • Model your top 3 queries; pick partitions that match those predicates

  • Use enum projection for low‑cardinality fields; date projection for time; integer ranges for buckets

  • Store data in columnar formats (Parquet/ORC) via Hudi to keep scans small and enable time travel

  • Add a thin API (API Gateway + Lambda) to turn traceability SQL into JSON for your UI

  • Measure planning vs. scan time; optimize the former first

    \

What this unlocked for my users

  • Analysts and support can answer “why” without engineers
  • Product can audit attribute changes by time and cause
  • Engineering spends more time on fixes and less time on forensics
  • The org trusts the data more because the evidence is one click away

\

Closing thought

Great performance is usually a data layout story. Before you scale compute, fix how you store and find bytes. In serverless analytics, the fastest query is the one that plans instantly and reads almost nothing, and partition projection is the lever that gets you there.

Piyasa Fırsatı
RealLink Logosu
RealLink Fiyatı(REAL)
$0.07319
$0.07319$0.07319
-0.83%
USD
RealLink (REAL) Canlı Fiyat Grafiği
Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

Trump Cancels Tech, AI Trade Negotiations With The UK

Trump Cancels Tech, AI Trade Negotiations With The UK

The US pauses a $41B UK tech and AI deal as trade talks stall, with disputes over food standards, market access, and rules abroad.   The US has frozen a major tech
Paylaş
LiveBitcoinNews2025/12/17 01:00
Egrag Crypto: XRP Could be Around $6 or $7 by Mid-November Based on this Analysis

Egrag Crypto: XRP Could be Around $6 or $7 by Mid-November Based on this Analysis

Egrag Crypto forecasts XRP reaching $6 to $7 by November. Fractal pattern analysis suggests a significant XRP price surge soon. XRP poised for potential growth based on historical price patterns. The cryptocurrency community is abuzz after renowned analyst Egrag Crypto shared an analysis suggesting that XRP could reach $6 to $7 by mid-November. This prediction is based on the study of a fractal pattern observed in XRP’s past price movements, which the analyst believes is likely to repeat itself in the coming months. According to Egrag Crypto, the analysis hinges on fractal patterns, which are used in technical analysis to identify recurring market behavior. Using the past price charts of XRP, the expert has found a certain fractal that looks similar to the existing market structure. The trend indicates that XRP will soon experience a great increase in price, and the asset will probably reach the $6 or $7 range in mid-November. The chart shared by Egrag Crypto points to a rising trend line with several Fibonacci levels pointing to key support and resistance zones. This technical structure, along with the fractal pattern, is the foundation of the price forecast. As XRP continues to follow the predicted trajectory, the analyst sees a strong possibility of it reaching new highs, especially if the fractal behaves as expected. Also Read: Why XRP Price Remains Stagnant Despite Fed Rate Cut #XRP – A Potential Similar Set-Up! I've been analyzing the yellow fractal from a previous setup and trying to fit it into various formations. Based on the fractal formation analysis, it suggests that by mid-November, #XRP could be around $6 to $7! Fractals can indeed be… pic.twitter.com/HmIlK77Lrr — EGRAG CRYPTO (@egragcrypto) September 18, 2025 Fractal Analysis: The Key to XRP’s Potential Surge Fractals are a popular tool for market analysis, as they can reveal trends and potential price movements by identifying patterns in historical data. Egrag Crypto’s focus on a yellow fractal pattern in XRP’s price charts is central to the current forecast. Having contrasted the market scenario at the current period and how it was at an earlier time, the analyst has indicated that XRP might revert to the same price scenario that occurred at a later cycle in the past. Egrag Crypto’s forecast of $6 to $7 is based not just on the fractal pattern but also on broader market trends and technical indicators. The Fibonacci retracements and extensions will also give more insight into the price levels that are likely to be experienced in the coming few weeks. With mid-November in sight, XRP investors and traders will be keeping a close eye on the market to see if Egrag Crypto’s analysis is true. If the price targets are reached, XRP could experience one of its most significant rallies in recent history. Also Read: Top Investor Issues Advance Warning to XRP Holders – Beware of this Risk The post Egrag Crypto: XRP Could be Around $6 or $7 by Mid-November Based on this Analysis appeared first on 36Crypto.
Paylaş
Coinstats2025/09/18 18:36
Truoux: In the Institutionalized Crypto Markets, How Investors Can Strengthen Anti-Scam Awareness

Truoux: In the Institutionalized Crypto Markets, How Investors Can Strengthen Anti-Scam Awareness

As the crypto market draws increasing attention from institutions, investors must remain vigilant, guard against various scam tactics, and rationally choose compliant
Paylaş
Techbullion2025/12/17 01:31