Researchers found that multimodal AI models cannot tell time. The more variation there was in the clock face, the more the chatbot being tested was likely to misreadResearchers found that multimodal AI models cannot tell time. The more variation there was in the clock face, the more the chatbot being tested was likely to misread

Before AI Takes Our Jobs, Someone Better Teach It How to Tell Time

Am I the only one who didn’t know that AI cannot figure out time? I mean, every day, we hear all about generative AI “revolutionizing” everything and replacing everyone. Pretty genius little things. So imagine my shock when I learned that multimodal AI models cannot tell time. How did I know, you ask?

To start with, researchers at the University of Edinburgh recently found that multimodal large language models (MLLMs) like ChatGPT-4o, GPT-o1, Gemini-2.0, and Claude 3.5-Sonnet ran into accuracy problems while reading a clock face.

Things got worse when they were tested with clocks designed with Roman numerals, a colored dial, or a decorative hour hand. Some of the clocks also had a hand that tracked seconds in addition to minutes and hours. In the face of those design touches, the AI models reportedly fell into further errors.

This discovery was made during a test of a lineup of top MLLMs today, and to think that Gemini-2.0 performed the “best” with only 22.8% accuracy sounds hilarious. GPT-4.o and GPT-o1’s exact match accuracy stood at 8.6% and 4.84% respectively.

Per the researchers, these models struggled with everything. Which hand is the hour hand? Which direction is it pointing? What angle corresponds to what time? What number is that? According to them, the more variation there was in the clock face, the more the chatbot being tested was likely to misread the clock.

These are literally basic skills for people. Most six or seven-year-olds can already tell time. But for these models, it might as well be the most complicated astrophysics.

After the clock fiasco, the researchers tested the bots on yearly calendars. You know, the ones with all twelve months on one page. GPT-o1 performed the “best” here, reaching 80 percent accuracy. But that still means that one out of every five answers was wrong, including simple questions like “Which day of the week is New Year’s Day? If my child failed to get that right on a quiz, I would honestly be very worried.

I never would have thought that AI models could ever get confused by a common calendar layout. But then, it is not very shocking to find out. It all still boils down to a long-standing gap in AI development. MLLMs only recognize patterns they have already seen, and clocks, calendars, or anything that requires spatial reasoning don’t fit into that.

Humans can look at a warped Dali clock and still figure out roughly what time it is meant to display. But AI models see a slightly thicker hour hand and kind of short-circuit.

Why This Matters

It is easy (almost satisfying) to laugh at ChatGPT, Gemini, and these models for failing a task you learned when you were little. A task you do with so much ease. As someone who has gotten jilted by clients for the free work these things offer, albeit substandard, I admit I do find it really satisfying.

But as much as I want to just laugh it off, there is a more serious angle to this. These same MLLMs are being pushed into autonomous driving perception, medical imaging, robotics, and accessibility tools. They are being used for scheduling and automation as well as real-time decision-making systems.

Now, clock-reading errors are funny. But medical errors? Navigation errors? Even scheduling errors? Not so funny.

If a model cannot reliably read a clock, trusting it blindly in high-stakes environments is too risky a gamble for me. It just shows how far these systems still are from actual, grounded intelligence. And how much human common sense and nuance still matter. I am trying so hard to steer clear of taking this chance to make a human vs. AI case. I sure won’t use it to preach “Why I Hate AI and You Should Too.” But there is a problem that needs to be looked into.

As the study’s lead author, Rohit Saxena, put it, these weaknesses “must be addressed if AI systems are to be successfully integrated into time-sensitive real-world applications.”

Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

China Blocks Nvidia’s RTX Pro 6000D as Local Chips Rise

China Blocks Nvidia’s RTX Pro 6000D as Local Chips Rise

The post China Blocks Nvidia’s RTX Pro 6000D as Local Chips Rise appeared on BitcoinEthereumNews.com. China Blocks Nvidia’s RTX Pro 6000D as Local Chips Rise China’s internet regulator has ordered the country’s biggest technology firms, including Alibaba and ByteDance, to stop purchasing Nvidia’s RTX Pro 6000D GPUs. According to the Financial Times, the move shuts down the last major channel for mass supplies of American chips to the Chinese market. Why Beijing Halted Nvidia Purchases Chinese companies had planned to buy tens of thousands of RTX Pro 6000D accelerators and had already begun testing them in servers. But regulators intervened, halting the purchases and signaling stricter controls than earlier measures placed on Nvidia’s H20 chip. Image: Nvidia An audit compared Huawei and Cambricon processors, along with chips developed by Alibaba and Baidu, against Nvidia’s export-approved products. Regulators concluded that Chinese chips had reached performance levels comparable to the restricted U.S. models. This assessment pushed authorities to advise firms to rely more heavily on domestic processors, further tightening Nvidia’s already limited position in China. China’s Drive Toward Tech Independence The decision highlights Beijing’s focus on import substitution — developing self-sufficient chip production to reduce reliance on U.S. supplies. “The signal is now clear: all attention is focused on building a domestic ecosystem,” said a representative of a leading Chinese tech company. Nvidia had unveiled the RTX Pro 6000D in July 2025 during CEO Jensen Huang’s visit to Beijing, in an attempt to keep a foothold in China after Washington restricted exports of its most advanced chips. But momentum is shifting. Industry sources told the Financial Times that Chinese manufacturers plan to triple AI chip production next year to meet growing demand. They believe “domestic supply will now be sufficient without Nvidia.” What It Means for the Future With Huawei, Cambricon, Alibaba, and Baidu stepping up, China is positioning itself for long-term technological independence. Nvidia, meanwhile, faces…
Paylaş
BitcoinEthereumNews2025/09/18 01:37
Samsung To Unveil New AI-Connected Living Lineup at CES 2026

Samsung To Unveil New AI-Connected Living Lineup at CES 2026

Company introduces AI-powered appliances designed to deliver smarter living by enhancing fabric care, air conditioning and cleaning Highlighted models include upgraded
Paylaş
AI Journal2025/12/18 09:16
XRP ETF Inflows Hit $8.54M as Institutional Exposure Rises to $1.16B

XRP ETF Inflows Hit $8.54M as Institutional Exposure Rises to $1.16B

XRP is currently trading at $1.86, consolidating near a key support zone while momentum remains weak. Institutional inflows into XRP-ETFs remain positive. Flow–
Paylaş
Tronweekly2025/12/18 09:00