Dockerized Android is a Docker-based virtualization platform that lets cyber-range designers simulate mobile attack and defense scenarios efficiently. Its modular design allows features like Bluetooth and GPS emulation to be toggled via Docker Compose, enhancing automation and realism. While best run on Linux, the system promises future cloud support and stronger security integrations, paving the way for more dynamic and realistic cybersecurity training environments.Dockerized Android is a Docker-based virtualization platform that lets cyber-range designers simulate mobile attack and defense scenarios efficiently. Its modular design allows features like Bluetooth and GPS emulation to be toggled via Docker Compose, enhancing automation and realism. While best run on Linux, the system promises future cloud support and stronger security integrations, paving the way for more dynamic and realistic cybersecurity training environments.

Building Smarter Cyber Ranges with Dockerized Android

2025/10/17 05:15

:::info Authors:

(1) Daniele Capone, SecSI srl, Napoli, Italy (daniele.capone@secsi.io);

(2) Francesco Caturano, Dept. of Electrical Engineering and Information, Technology University of Napoli Federico II, Napoli, Italy (francesco.caturano@unina.i)

(3) Angelo Delicato, SecSI srl, Napoli, Italy (angelo.delicato@secsi.io);

(4) Gaetano Perrone, Dept. of Electrical Engineering and Information Technology, University of Napoli Federico II, Napoli, Italy (gaetano.perrone@unina.it)

(5) Simon Pietro Romano, Dept. of Electrical Engineering and Information Technology, University of Napoli Federico II, Napoli, Italy (spromano@unina.it).

:::

Abstract and I. Introduction

II. Related Work

III. Dockerized Android: Design

IV. Dockerized Android Architecture

V. Evaluation

VI. Conclusion and Future Developments, and References

VI. CONCLUSION AND FUTURE DEVELOPMENTS

In this work, we have described Dockerized Android, a platform that supports cyber-range designers in realizing mobile virtual scenarios. The application is based on Docker, i.e., a container-based virtualization framework extensively adopted in the cyber-range field for several benefits already mentioned. We described the main components and showed how it is possible to realize a complex cyber kill-chain scenario that involves the utilization of Bluetooth components. The architecture has been conceived at the outset as an extensible one. Its feature set can be dynamically enabled or disabled through the docker-compose creator, and some fine-grained options can be configured to customize the scenarios. The strength of this system is its ability to quickly run a mobile component through Docker, with many interesting features out of the box. Furthermore, the centralization of several components increases the overall usability level. The cons are all related to compatibility issues with Windows and OS X when running the Core for Emulator. While the former will probably be solved with the next updates, the latter is not solvable without significant changes to the OS X implementation. Another limitation is the lack of support for emulating some hardware components, e.g., Bluetooth. For these reasons, the Linux environment as a host machine is strongly recommended. We will also assess the potential benefits of using Dockerized Android in cloud-based environments in future works. Other improvements include the full integration of security-based features in the Android Emulator. For example, the GPS location could be useful to simulate a realistic route traveled by a simulated user. In recent works, cyber ranges are configured by using the high-level SDL (Specification and Description Language) representation [8]. Integrating this language in Dockerized Android is relatively easy, as every feature is set through Docker environment variables. Additional efforts will be focused on improving automation features, such as the design of an event-based architecture to simulate complex sequential actions involving human interaction.

REFERENCES

[1] Jan Vykopal et al. “Lessons learned from complex hands-on defence exercises in a cyber range”. In: 2017 IEEE Frontiers in Education Conference (FIE). 2017, pp. 1–8. DOI: 10.1109/FIE.2017.8190713.

\ [2] Adam McNeil and W. Stuart Jones. Mobile Malware is Surging in Europe: A Look at the Biggest Threats. https://www.proofpoint.com/us/blog/email-and-cloudthreats/mobile-malware- surging-europe-look- biggestthreats. Online; 14-May-2022. 2022.

\ [3] René Mayrhofer et al. “The Android Platform Security Model”. In: ACM Transactions on Privacy and Security 24.3 (Aug. 2021), pp. 1–35. DOI: 10 . 1145/ 3448609. URL: https://doi.org/10.1145/3448609.

\ [4] Ryotaro Nakata and Akira Otsuka. “CyExec*: A HighPerformance Container-Based Cyber Range With Scenario Randomization”. In: IEEE Access 9 (2021), pp. 109095–109114. DOI: 10 . 1109 / ACCESS . 2021 . 3101245.

\ [5] Ryotaro Nakata and Akira Otsuka. Evaluation of vulnerability reproducibility in container-based Cyber Range. 2020. DOI: 10.48550/ARXIV.2010.16024. URL: https: //arxiv.org/abs/2010.16024.

\ [6] Francesco Caturano, Gaetano Perrone, and Simon Pietro Romano. “Capturing flags in a dynamically deployed microservices-based heterogeneous environment”. In: 2020 Principles, Systems and Applications of IP Telecommunications (IPTComm). 2020, pp. 1–7. DOI: 10.1109/IPTComm50535.2020.9261519.

\ [7] Muhammad Mudassar Yamin, Basel Katt, and Vasileios Gkioulos. “Cyber ranges and security testbeds: Scenarios, functions, tools and architecture”. In: Computers & Security 88 (Jan. 2020), p. 101636. DOI: 10. 1016/ J. COSE.2019.101636.

\ [8] Enrico Russo, Luca Verderame, and Alessio Merlo. “Enabling Next-Generation Cyber Ranges with Mobile Security Components”. In: IFIP International Conference on Testing Software and Systems. Springer, 2020, pp. 150–165.

\ [9] Giuseppe Trotta Andrea Pierini. From APK to Golden Ticket. https://www.exploit-db.com/docs/english/44032- from- apk-to- golden-ticket.pdf. [Online; accessed 01- March-2021]. 2017.

\ [10] Genymotion. Android as a Service. https : / / www . genymotion.com/. [Online; accessed 1-March-2021].

\ [11] Corellium. ARM Device Virtualization. https : / / corellium.com/. [Online; accessed 10-March-2021].

\ [12] Android Emulator. https : / / developer . android . com / studio/run/emulator. Accessed: 11-01-2021.

\ [13] thyrlian. AndroidSDK. https : / / github . com / thyrlian / AndroidSDK. [Online; accessed 10-March-2021].

\ [14] budtmo. docker-android. https:// github. com/ budtmo/ docker-android. [Online; accessed 10-March-2021].

\ [15] bitrise-io. android. https://github.com/bitrise-io/android. [Online; accessed 10-March-2021].

\ [16] MobSF. Mobile Security Framework. https : / / www . github . com / MobSF / Mobile - Security - Framework - MobSF. [Online; accessed 1-March-2021].

\ [17] Dockerfile best practices. https : / / docs . docker. com / develop / develop - images / dockerfile _ best - practices/. Accessed: 13-02-2021.

\ [18] Flaticon. Free vector icons. https://www.flaticon.com/. [Online; accessed 17-April-2021].

\ [19] Frida. Frida. https://frida.re/. Online; 13-May-2022.

\ [20] Anonymized authors. Dockerized Android github repo. . In order to adhere to the double-blind review principle, the github repo information has been obfuscated and will be made available if and when the paper is accepted.

\ [21] Android-Exploits. https : / / github . com / sundaysec / Android - Exploits / blob / master / remote / 44242 . md. [Online; accessed 19-April-2021].

\ [22] Ben Seri and Gregory Vishnepolsky. BlueBorne - The dangers of Bluetooth implementations: Unveiling zero day vulnerabilities and security flaws in modern Bluetooth stacks. Tech. rep. Armis, 2017.

\ [23] Armis Security. BlueBorne. https://www.armis.com/ research/blueborne/. Online; 13-May-2022. 2017.

\

:::info This paper is available on arxiv under CC by-SA 4.0 Deed (Attribution-Sahrealike 4.0 International license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.
Share Insights

You May Also Like

BNB Price Drops 2% as the Dex Volume Tumbles Cautioning Further Downside

BNB Price Drops 2% as the Dex Volume Tumbles Cautioning Further Downside

        Highlights:  The BNB price is down 2% to $1111.46, despite the trading volume spiking 26%. The BNB on-chain demand has slipped, with the open interest plummeting 3% showing a drop in demand.  The technical outlook shows a tight tug-of-war, with the bulls attempting to overcome resistance zones.   The BNB price is down 2% today, to trade at $1111.46. Despite the plunge, the daily trading volume has soared 26% showing increased market activity among traders. However, BNB Chain has seen declining network activity, with the open interest plummeting, signaling a drop in demand.  On Chain Demand on BNB Cools Off The BNB Chain is in a state of cooldown of network activity, which indicates low on-chain demand. In most instances, when a network fails to ensure large volumes or revenues, it means that there is low demand or outflows to other networks.  BNB DeFi Data: DeFiLlama According to DeFiLlama data, the volume of the Decentralized Exchanges (DEXs) is down to at least $2.12 billion in comparison to the high of $6.313 billion on October 8, which also means low on-chain liquidity.  On the other hand, Coinglass data shows that the volume of BNB has grown by 3.97% to reach $4.95 billion. However, the open interest in BNB futures has dropped by 3.36% to reach $1.74 billion. This reduction in open interest is an indication of a conservative stance by investors since the number of new positions being opened is low. This could be an indication that investors are not so sure about the short-term price outlook. BNB Derivatives Data: CoinGlass Meanwhile, the long-to-short ratio is sitting at 0.9091. This shows that the traders are undecided on BNB price’s next move, as it sits below 1.  BNB Price Moves Into Consolidation The chart displays the BNB/USD price action on a 4-hour timeframe, with the token currently hovering around $1111.46. The 50-day Simple Moving Average (SMA) is at $1113, while the 200-day SMA sits at $1129, cushioning the bulls against upside movement. The price has mostly been trending below both SMAs, indicating that the bears are having the upper hand.  The BNB trading volume is up, soaring 26%, signaling the momentum is real. On the 4-hour chart, BNB is trading within a consolidation channel. In such a case, this pattern may act as an accumulation period, giving the bulls hind wings to break above resistance zones.  BNB/USD 4-hour chart: TradingView Zooming in, the Relative Strength Index (RSI) sits at 44.15, below the 50 level. This shows weakening momentum in the BNB market, and might lead to the RSI plunging to the oversold region if the bulls don’t regain control. In the short term, the BNB price could move up to $1113 resistance and flip it into support. A close above this zone will see the bulls target $1126 resistance, giving the bulls strength to reclaim the $1230 mark.  Conversely, if the resistance zones prove too strong, a dip towards $1012 could be plausible. In such a case, this could be a prime buy zone for the risk-takers. In the long term, if the token keeps the hype alive, the bulls may reclaim the $1375 high or higher.    eToro Platform    Best Crypto Exchange   Over 90 top cryptos to trade Regulated by top-tier entities User-friendly trading app 30+ million users    9.9   Visit eToro eToro is a multi-asset investment platform. The value of your investments may go up or down. Your capital is at risk. Don’t invest unless you’re prepared to lose all the money you invest. This is a high-risk investment, and you should not expect to be protected if something goes wrong. 
Share
Coinstats2025/10/29 20:19